### Refine

#### Year of publication

- 1998 (32) (remove)

#### Keywords

- Kollisionen schwerer Ionen (5)
- heavy ion collisions (5)
- Kollisionen schwerer Ionen (4)
- Quark Gluon Plasma (4)
- QGP (3)
- Quanten-Chromodynamik (3)
- Quark-Gluon-Plasma (3)
- UrQMD (3)
- Zustandsgleichung (3)
- equation of state (3)

- Role of the higher static deformations of fragments in the cold binary fission of 252Cf (1998)
- We study the binary cold fission of 252Cf in the frame of a cluster model where the fragments are born to their respective ground states and interact via a double-folded potential with deformation effects taken into account up to multipolarity lambda=4. The preformation factors were neglected. In the case when the fragments are assumed to be spherical or with ground-state quadrupole deformation, the Q-value principle dictates the occurrence of a narrow region around the double magic 132Sn, like in the case of cluster radioactivity. When the hexadecupole deformation is turned on, an entire mass region of cold fission in the range 138–156 for the heavy fragment arise, in agreement with the experimental observations. This fact suggests that in the above-mentioned mass region, contrary to the usual cluster radioactivity where the daughter nucleus is always a neutron/proton (or both) closed shell or nearly closed shell spherical nucleus, the clusterization mechanism seems to be strongly influenced by the hexadecupole deformations rather than the Q value.

- Potential energy surfaces of superheavy nuclei (1998)
- We investigate the structure of the potential energy surfaces of the superheavy nuclei 158258Fm100, 156264Hs108, 166278112, 184298114, and 172292120 within the framework of self-consistent nuclear models, i.e., the Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare results obtained with one representative parametrization of each model which is successful in describing superheavy nuclei. We find systematic changes as compared to the potential energy surfaces of heavy nuclei in the uranium region: there is no sufficiently stable fission isomer any more, the importance of triaxial configurations to lower the first barrier fades away, and asymmetric fission paths compete down to rather small deformation. Comparing the two models, it turns out that the relativistic mean-field model gives generally smaller fission barriers.

- The origin of transverse flow at the SPS (1998)
- We study the transverse expansion in central Pb+Pb collisions at the CERN SPS. Strong collective motion of hadrons can be created. This flow is mainly due to meson baryon rescattering. It allows to study the angular distribution of intermediate mass meson baryon interactions.

- Intermediate mass excess of dilepton production in heavy ion collisions at BEVALAC energies (1998)
- Dielectron mass spectra are examined for various nuclear reactions recently measured by the DLS collaboration. A detailed description is given of all dilepton channels included in the transport model UrQMD 1.0, i.e. Dalitz decays of π, η, ω, ή mesons and of the (1232) resonance, direct decays of vector mesons and pn bremsstrahlung. The microscopic calculations reproduce data for light systems fairly well, but tend to underestimate the data in pp at high energies and in pd at low energies. These conventional sources, however, cannot explain the recently reported enhancement for nucleus-nucleus collisions in the mass region 0.15GeV ≤ Me+e- ≤ 0.6GeV. Chiral scaling and ω meson broadening in the medium are investigated as a source of this mass excess. They also cannot explain the recent DLS data.

- Fluctuations and inhomogenities of energy density and isospin in Pb + Pb at the SPS (1998)
- The main goal of heavy ion physics in the last fifteen years has been the search for the quark-gluon-plasma(QGP). Until now, unambigous experimental evidence for the QGP is missing.

- Intermediate mass dileptons from secondary Drell-Yan processes (1998)
- Recent reports on enhancements of intermediate and hight mass muon pairs producedin heavy ion collisions have attracted much attention.

- Nuclear shadowing effects on prompt photons at RHIC and LHC (1998)
- The transverse momentum distribution of prompt photons coming from the very early phase of ultrarelativistic heavy ion collisions for the RHIC and LHC energies is calculated by means of perturbative QCD. We calculate the single photon cross section (A + B -> gamma + X) by taking into account the partonic sub processes q + q -> gamma + g and q + g -> gamma + q as well as the Bremsstrahlung corrections to those processes. We choose a lower momentum cut-off k0 = 2 GeV separating the soft physics from perturbative QCD. We compare the results for those primary collisions with the photons produced in reactions of the thermalized secondary particles, which are calculated within scaling hydrodynamics. The QCD processes are taken in leading order. Nuclear shadowing corrections, which alter the involved nuclear structure functions are explicitly taken into account and compared to unshadowed results. Employing the GRV parton distribution parametrizations we find that at RHIC prompt QCD-photons dominate over the thermal radiation down to transverse momenta kT ≈ 2 GeV. At LHC, however, thermal radiation from the QGP dominates for photon transverse momenta kT ≤ 5 GeV, if nuclear shadowing effects on prompt photon production are taken into account.

- Relativistic transport theory for N, Delta and N*(1440) system (1998)
- A self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation for the N (1440) resonance is developed based on an effective Lagrangian of baryons interacting through mesons. The equation is consistent with that of nucleon s and delta s which we derived before. Thus, we obtain a set of coupled equations for the N, Delta and N (1440) distribution functions. All the N (1440)-relevant in-medium two-body scattering cross sections within the N, Delta and N (1440) system are derived from the same effective Lagrangian in addition to the mean field and presented analytically. Medium effects on the cross sections are discussed.

- Self-consistent relativistic quantum transport theory of hadronic matter : the coupled nucleon, delta and pion system (1998)
- We derive the self-consistent relativistic quantum transport equation for the pion distribution function based on an effective Lagrangian of the QHD-II model. The closed time-path Green's function technique, the semi-classical, quasi-particle and Born approximation are employed in the derivation. Both the mean field and collision term are derived from the same Lagrangian and presented analytically. The dynamical equation for the pions is consistent with that for the nucleons and deltas which we developed before. Thus, we obtain a self-consistent relativistic transport model which describes the hadronic matter with N, Delta and pi degrees of freedom simultaneously. Within this approach, we investigate the medium effects on the pion dispersion relation as well as the pion absorption and pion production channels in cold nuclear matter. In contrast to the results of the non-relativistic model, the pion dispersion relation becomes harder at low momenta and softer at high momenta as compared to the free one. The theoretically predicted free pi N to Delta cross section is in agreement with the experimental data. Medium effects on the pi N to Delta cross section and momentum-dependent Delta-decay width are shown to be substantial.

- Relativistic quantum transport theory of hadronic matter: the coupled nucleon, delta and pion system (1998)
- We derive the relativistic quantum transport equation for the pion distribution function based on an effective Lagrangian of the QHD-II model. The closed time-path Green s function technique, the semi-classical, quasiparticle and Born approximation are employed in the derivation. Both the mean field and collision term are derived from the same Lagrangian and presented analytically. The dynamical equation for the pions is consistent with that for the nucleons and deltas which we developed before. Thus, we obtain a relativistic transport model which describes the hadronic matter with N,Delta and pi degrees of freedom simultaneously. Within this approach, we investigate the medium e ects on the pion dispersion relation as well as the pion absorption and pion production channels in cold nuclear matter. In contrast to the results of the non-relativistic model, the pion dispersion relation becomes harder at low momenta and softer at high momenta as compared to the free one, which is mainly caused by the relativistic kinetics. The theoretically predicted free pi*N -> Delta cross section is in agreement with the experimental data. Medium e ects on the pi*N -> Delta cross section and momentum-dependent Delta-decay width are shown to be substantial. PACS number(s): 24.10.Cn; 13.75.Cs; 21.65.+f; 25.70.-z