### Refine

#### Year of publication

- 2004 (32) (remove)

#### Document Type

- Preprint (32) (remove)

#### Is part of the Bibliography

- no (32) (remove)

#### Keywords

- - (1)
- Antiteilchen (1)
- Charge fluctuations (1)
- Chemical equilibration (1)
- Chemische Gleichgewichtherstellung (1)
- Dichte (1)
- Elektron (1)
- Gyromagnetic Moment (1)
- Kollision (1)
- Produktion von pentaquark (1)

#### Institute

- Physik (32) (remove)

- Signatures of large extra dimensions (2004)
- String theory suggests modifications of our spacetime such as extra dimensions and the existence of a mininal length scale. In models with addidional dimensions, the Planck scale can be lowered to values accessible by future colliders. Effective theories which extend beyond the standart-model by including extra dimensions and a minimal length allow computation of observables and can be used to make testable predictions. Expected effects that arise within these models are the production of gravitons and black holes. Furthermore, the Planck-length is a lower bound to the possible resolution of spacetime which might be reached soon.

- Impact of baryon resonances on the chiral phase transition at finite temperature and density (2004)
- We study the phase diagram of a generalized chiral SU(3)-flavor model in mean-field approxi- mation. In particular, the influence of the baryon resonances, and their couplings to the scalar and vector fields, on the characteristics of the chiral phase transition as a function of temperature and baryon-chemical potential is investigated. Present and future finite-density lattice calculations might constrain the couplings of the fields to the baryons. The results are compared to recent lattice QCD calculations and it is shown that it is non-trivial to obtain, simultaneously, stable cold nuclear matter.

- Complex fission phenomena (2004)
- Complex fission phenomena are studied in a unified way. Very general reflection asymmetrical equilibrium (saddle point) nuclear shapes are obtained by solving an integro-differential equation without being necessary to specify a certain parametrization. The mass asymmetry in binary cold fission of Th and U isotopes is explained as the result of adding a phenomenological shell correction to the liquid drop model deformation energy. Applications to binary, ternary, and quaternary fission are outlined.

- Analytical relationship for the cranking inertia (2004)
- The wave function of a spheroidal harmonic oscillator without spin-orbit interaction is expressed in terms of associated Laguerre and Hermite polynomials. The pairing gap and Fermi energy are found by solving the BCS system of two equations. Analytical relationships for the matrix elements of inertia are obtained function of the main quantum numbers and potential derivative. They may be used to test complex computer codes one should develop in a realistic approach of the fission dynamics. The results given for the 240 Pu nucleus are compared with a hydrodynamical model. The importance of taking into account the correction term due to the variation of the occupation number is stressed.

- Deformation energy minima at finite mass asymmetry (2004)
- A very general saddle point nuclear shape may be found as a solution of an integro-differential equation without giving apriori any shape parametrization. By introducing phenomenological shell corrections one obtains minima of deformation energy for binary fission of parent nuclei at a finite (non-zero) mass asymmetry. Results are presented for reflection asymmetric saddle point shapes of thorium and uranium even-mass isotopes with A=226-238 and A=230-238 respectively.

- Gapless phases of colour-superconducting matter (2004)
- We discuss gapless colour superconductivity for neutral quark matter in β equilibrium at zero as well as at nonzero temperature. Basic properties of gapless superconductors are reviewed. The current progress and the remaining problems in the understanding of the phase diagram of strange quark matter are discussed.

- Universal transition curve in pseudo-rapidity distribution (2004)
- We show that an unambiguous way of determining the universal limiting fragmentation region is to consider the derivative (d 2 n / d eta 2) of the pseudo-rapidity distribution per participant pair. In addition, we find that the transition region between the fragmentation and the central plateau regions exhibits a second kind of universal behavior that is only apparent in d 2 n / d eta 2. The sqrt s dependence of the height of the central plateau (d n / d eta) eta=0 and the total charged particle multiplicity n total critically depend on the behavior of this universal transition curve. Analyzing available RHIC data, we show that (dn/d eta) eta=0 can be bounded by ln 2 s and n total can be bounded by ln 3 s. We also show that the deuteron-gold data from RHIC has the exactly same features as the gold-gold data indicating that these universal behaviors are a feature of the initial state parton-nucleus interactions and not a consequence of final state interactions. Predictions for LHC energy are also given.

- Fluctuations and deconfinement phase transition in nucleus-nucleus collisions (2004)
- We propose a method to experimentally study the equation of state of strongly interacting matter created at the early stage of nucleus--nucleus collisions. The method exploits the relation between relative entropy and energy fluctuations and equation of state. As a measurable quantity, the ratio of properly filtered multiplicity to energy fluctuations is proposed. Within a statistical approach to the early stage of nucleus-nucleus collisions, the fluctuation ratio manifests a non--monotonic collision energy dependence with a maximum in the domain where the onset of deconfinement occurs.

- Fluctuations of strangeness and deconfinement phase transition in nucleus-nucleus collisions (2004)
- We suggest that the fluctuations of strange hadron multiplicity could be sensitive to the equation of state and microscopic structure of strongly interacting matter created at the early stage of high energy nucleus-nucleus collisions. They may serve as an important tool in the study of the deconfinement phase transition. We predict, within the statistical model of the early stage, that the ratio of properly filtered fluctuations of strange to non-strange hadron multiplicities should have a non-monotonic energy dependence with a minimum in the mixed phase region.

- Particle number fluctuations in canonical ensemble (2004)
- Fluctuations of charged particle number are studied in the canonical ensemble. In the infinite volume limit the fluctuations in the canonical ensemble are different from the fluctuations in the grand canonical one. Thus, the well-known equivalence of both ensembles for the average quantities does not extend for the fluctuations. In view of a possible relevance of the results for the analysis of fluctuations in nuclear collisions at high energies, a role of the limited kinematical acceptance is studied.