### Refine

#### Year of publication

- 2004 (32) (remove)

#### Document Type

- Preprint (32) (remove)

#### Is part of the Bibliography

- no (32) (remove)

#### Keywords

- - (1)
- Antiteilchen (1)
- Charge fluctuations (1)
- Chemical equilibration (1)
- Chemische Gleichgewichtherstellung (1)
- Dichte (1)
- Elektron (1)
- Gyromagnetic Moment (1)
- Kollision (1)
- Produktion von pentaquark (1)

#### Institute

- Physik (32) (remove)

- Impact of baryon resonances on the chiral phase transition at finite temperature and density (2004)
- We study the phase diagram of a generalized chiral SU(3)-flavor model in mean-field approxi- mation. In particular, the influence of the baryon resonances, and their couplings to the scalar and vector fields, on the characteristics of the chiral phase transition as a function of temperature and baryon-chemical potential is investigated. Present and future finite-density lattice calculations might constrain the couplings of the fields to the baryons. The results are compared to recent lattice QCD calculations and it is shown that it is non-trivial to obtain, simultaneously, stable cold nuclear matter.

- Nonequilibrium models of relativistic heavy-ion collisions (2004)
- To be published in J. Phys. G - Proceedings of SQM 2004 : We review the results from the various hydrodynamical and transport models on the collective flow observables from AGS to RHIC energies. A critical discussion of the present status of the CERN experiments on hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 A.GeV: here the hydrodynamic model has predicted the collapse of the v2-flow ~ 10 A.GeV; at 40 A.GeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as evidence for a first order phase transition at high baryon density r b. Moreover, the connection of the elliptic flow v2 to jet suppression is examined. It is proven experimentally that the collective flow is not faked by minijet fragmentation. Additionally, detailed transport studies show that the away-side jet suppression can only partially (< 50%) be due to hadronic rescattering. Furthermore, the change in sign of v1, v2 closer to beam rapidity is related to the occurence of a high density first order phase transition in the RHIC data at 62.5, 130 and 200 A.GeV.

- Collective flow signals the quark gluon plasma (2004)
- A critical discussion of the present status of the CERN experiments on charm dynamics and hadron collective flow is given. We emphasize the importance of the flow excitation function from 1 to 50 A·GeV: here the hydrodynamic model has predicted the collapse of the v1-flow and of the v2-flow at 10 A·GeV; at 40 A·GeV it has been recently observed by the NA49 collaboration. Since hadronic rescattering models predict much larger flow than observed at this energy we interpret this observation as potential evidence for a first order phase transition at high baryon density B. A detailed discussion of the collective flow as a barometer for the equation of state (EoS) of hot dense matter at RHIC follows. Here, hadronic rescattering models can explain < 30% of the observed elliptic flow, v2, for pT > 2 GeV/c. This is interpreted as evidence for the production of superdense matter at RHIC with initial pressure far above hadronic pressure, p > 1 GeV/fm3. We suggest that the fluctuations in the flow, v1 and v2, should be measured in future since ideal hydrodynamics predicts that they are larger than 50 % due to initial state fluctuations. Furthermore, the QGP coe cient of viscosity may be determined experimentally from the fluctuations observed. The connection of v2 to jet suppression is examined. It is proven experimentally that the collective flow is not faked by minijet fragmentation. Additionally, detailed transport studies show that the awayside jet suppression can only partially (< 50%) be due to hadronic rescattering. We, finally, propose upgrades and second generation experiments at RHIC which inspect the first order phase transition in the fragmentation region, i.e. at µB 400 MeV (y 4 5), where the collapse of the proton flow should be seen in analogy to the 40 A·GeV data. The study of Jet-Wake-riding potentials and Bow shocks caused by jets in the QGP formed at RHIC can give further information on the equation of state (EoS) and transport coe cients of the Quark Gluon Plasma (QGP).

- Phi-Meson production at RHIC, strong color fields and intrinsic transverse momenta (2004)
- We investigate the effects of strong color fields and of the associated enhanced intrinsic transverse momenta on the phi-meson production in ultrarelativistic heavy ion collisions at RHIC. The observed consequences include a change of the spectral slopes, varying particle ratios, and also modified mean transverse momenta. In particular, the composition of the production processes of phi-mesons, that is, direct production vs. coalescence-like production, depends strongly on the strength of the color fields and intrinsic transverse momenta and thus represents a sensitive probe for their measurement.

- Gapless phases of colour-superconducting matter (2004)
- We discuss gapless colour superconductivity for neutral quark matter in β equilibrium at zero as well as at nonzero temperature. Basic properties of gapless superconductors are reviewed. The current progress and the remaining problems in the understanding of the phase diagram of strange quark matter are discussed.

- Phase diagram of dense neutral three-flavor quark matter (2004)
- We study the phase diagram of dense, locally neutral three-flavor quark matter as a function of the strange quark mass, the quark chemical potential, and the temperature, employing a general nine-parameter ansatz for the gap matrix. At zero temperature and small values of the strange quark mass, the ground state of matter corresponds to the color-flavor-locked (CFL) phase. At some critical value of the strange quark mass, this is replaced by the recently proposed gapless CFL (gCFL) phase. We also find several other phases, for instance, a metallic CFL (mCFL) phase, a so-called uSC phase where all colors of up quarks are paired, as well as the standard two-flavor color-superconducting (2SC) phase and the gapless 2SC (g2SC) phase.

- Multiplicity fluctuations in nuclear collisions at 158 A GeV (2004)
- System size dependence of multiplicity fluctuations of charged particles produced in nuclear collisions at 158 A GeV was studied in the NA49 CERN experiment. Results indicate a non-monotonic dependence of the scaled variance of the multiplicity distribution with a maximum for semi-peripheral Pb+Pb interactions with number of projectile participants of about 35. This effect is not observed in a string-hadronic model of nuclear collision HIJING.

- Event-by-event fluctuations of particle ratios in central Pb + Pb collisions at 20 to 158 AGeV (2004)
- In the vicinity of the QCD phase transition, critical fluctuations have been predicted to lead to non-statistical fluctuations of particle ratios, depending on the nature of the phase transition. Recent results of the NA49 energy scan program show a sharp maximum of the ratio of K+ to Pi+ yields in central Pb+Pb collisions at beam energies of 20-30 AGeV. This observation has been interpreted as an indication of a phase transition at low SPS energies. We present first results on event-by-event fluctuations of the kaon to pion and proton to pion ratios at beam energies close to this maximum.

- Deformation energy minima at finite mass asymmetry (2004)
- A very general saddle point nuclear shape may be found as a solution of an integro-differential equation without giving apriori any shape parametrization. By introducing phenomenological shell corrections one obtains minima of deformation energy for binary fission of parent nuclei at a finite (non-zero) mass asymmetry. Results are presented for reflection asymmetric saddle point shapes of thorium and uranium even-mass isotopes with A=226-238 and A=230-238 respectively.

- Analytical relationship for the cranking inertia (2004)
- The wave function of a spheroidal harmonic oscillator without spin-orbit interaction is expressed in terms of associated Laguerre and Hermite polynomials. The pairing gap and Fermi energy are found by solving the BCS system of two equations. Analytical relationships for the matrix elements of inertia are obtained function of the main quantum numbers and potential derivative. They may be used to test complex computer codes one should develop in a realistic approach of the fission dynamics. The results given for the 240 Pu nucleus are compared with a hydrodynamical model. The importance of taking into account the correction term due to the variation of the occupation number is stressed.