Refine
Is part of the Bibliography
3 search hits
-
Particle number fluctuations in high energy nucleus-nucleus collisions from microscopic transport approaches
(2005)
-
Volodymyr P. Konchakovski
Stephane Häussler
Mark I. Gorenstein
Elena L. Bratkovskaya
Marcus Bleicher
Horst Stöcker
- Event-by-event multiplicity fluctuations in nucleus-nucleus collisions are studied within the HSD and UrQMD transport models. The scaled variances of negative, positive, and all charged hadrons in Pb+Pb at 158 AGeV are analyzed in comparison to the data from the NA49 Collaboration. We find a dominant role of the fluctuations in the nucleon participant number for the final hadron multiplicity fluctuations. This fact can be used to check di erent scenarios of nucleus-nucleus collisions by measuring the final multiplicity fluctuations as a function of collision centrality. The analysis reveals surprising e ects in the recent NA49 data which indicate a rather strong mixing of the projectile and target hadron production sources even in peripheral collisions. PACS numbers: 25.75.-q,25.75.Gz,24.60.-k
-
Charmonium chemistry in A+A collisions at relativistic energies
(2005)
-
Elena L. Bratkovskaya
Andriy P. Kostyuk
Wolfgang Cassing
Horst Stöcker
- Charmonium production and suppression in heavy-ion collisions at relativistic energies is investigated within di erent models, i.e. the comover absorption model, the threshold suppression model, the statistical coalescence model and the HSD transport approach. In HSD the charmonium dissociation cross sections with mesons are described by a simple phase-space parametrization including an e ective coupling strength |Mi|2 for the charmonium states i =Xc,J/psi, psi'. This allows to include the backward channels for charmonium reproduction by DD channels which are missed in the comover absorption and threshold suppression model employing detailed balance without introducing any new parameters. It is found that all approaches yield a reasonable description of J/psi suppression in S+U and Pb+Pb collisions at SPS energies. However, they di er significantly in the psi'/J/psi ratio versus centrality at SPS and especially at RHIC energies. These pronounced differences can be exploited in future measurements at RHIC to distinguish the hadronic rescattering scenarios from quark coalescence close to the QGP phase boundary.
-
Transverse pressure and strangeness dynamics in relativistic heavy-ion reactions
(2005)
-
Marcus Bleicher
Elena L. Bratkovskaya
Sascha Vogel
Xianglei Zhu
- Transverse hadron spectra from proton-proton, proton-nucleus and nucleus-nucleus collisions from 2 AGeV to 21.3 ATeV are investigated within two independent transport approaches (HSD and UrQMD). For central Au+Au (Pb+Pb) collisions at energies above E lab ~ 5 AGeV, the measured K +- transverse mass spectra have a larger inverse slope parameter than expected from the default calculations. The additional pressure - as suggested by lattice QCD calculations at finite quark chemical potential mu q and temperature T - might be generated by strong interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb) collisions. This is supported by a non-monotonic energy dependence of v2/pT in the present transport model.