### Refine

#### Year of publication

#### Document Type

- Working Paper (100) (remove)

#### Keywords

- Lambda-Kalkül (18)
- Formale Semantik (8)
- Programmiersprache (7)
- Nebenläufigkeit (6)
- Operationale Semantik (4)
- Verifikation (4)
- lambda calculus (4)
- Funktionale Programmierung (3)
- Logik (3)
- Operationale Semantik (3)

#### Institute

- Informatik (100) (remove)

- Correctness of an STM Haskell implementation (2013)
- A concurrent implementation of software transactional memory in Concurrent Haskell using a call-by-need functional language with processes and futures is given. The description of the small-step operational semantics is precise and explicit, and employs an early abort of conflicting transactions. A proof of correctness of the implementation is given for a contextual semantics with may- and should-convergence. This implies that our implementation is a correct evaluator for an abstract specification equipped with a big-step semantics.

- Towards correctness of program transformations through unification and critical pair computation (2011)
- Correctness of program transformations in extended lambda calculi with a contextual semantics is usually based on reasoning about the operational semantics which is a rewrite semantics. A successful approach to proving correctness is the combination of a context lemma with the computation of overlaps between program transformations and the reduction rules, and then of so-called complete sets of diagrams. The method is similar to the computation of critical pairs for the completion of term rewriting systems.We explore cases where the computation of these overlaps can be done in a first order way by variants of critical pair computation that use unification algorithms. As a case study we apply the method to a lambda calculus with recursive let-expressions and describe an effective unification algorithm to determine all overlaps of a set of transformations with all reduction rules. The unification algorithm employs many-sorted terms, the equational theory of left-commutativity modelling multi-sets, context variables of different kinds and a mechanism for compactly representing binding chains in recursive let-expressions.

- Reconstruction of a logic for inductive proofs of properties of functional programs (2010)
- The interactive verification system VeriFun is based on a polymorphic call-by-value functional language and on a first-order logic with initial model semantics w.r.t. constructors. It is designed to perform automatic induction proofs and can also deal with partial functions. This paper provides a reconstruction of the corresponding logic and semantics using the standard treatment of undefinedness which adapts and improves the VeriFun-logic by allowing reasoning on nonterminating expressions and functions. Equality of expressions is defined as contextual equivalence based on observing termination in all closing contexts. The reconstruction shows that several restrictions of the VeriFun framework can easily be removed, by natural generalizations: mutual recursive functions, abstractions in the data values, and formulas with arbitrary quantifier prefix can be formulated. The main results of this paper are: an extended set of deduction rules usable in VeriFun under the adapted semantics is proved to be correct, i.e. they respect the observational equivalence in all extensions of a program. We also show that certain classes of theorems are conservative under extensions, like universally quantified equations. Also other special classes of theorems are analyzed for conservativity.

- Reconstruction of a logic for inductive proofs of properties of functional programs (2010)
- The interactive verification system VeriFun is based on a polymorphic call-by-value functional language and on a first-order logic with initial model semantics w.r.t. constructors. This paper provides a reconstruction of the corresponding logic when partial functions are permitted. Typing is polymorphic for the definition of functions but monomorphic for terms in formulas. Equality of terms is defined as contextual equivalence based on observing termination in all contexts. The reconstruction also allows several generalizations of the functional language like mutual recursive functions and abstractions in the data values. The main results are: Correctness of several program transformations for all extensions of a program, which have a potential usage in a deduction system. We also proved that universally quantified equations are conservative, i.e. if a universally quantified equation is valid w.r.t. a program P, then it remains valid if the program is extended by new functions and/or new data types.

- On correctness of buffer implementations in a concurrent lambda calculus with futures (2009)
- Motivated by the question of correctness of a specific implementation of concurrent buffers in the lambda calculus with futures underlying Alice ML, we prove that concurrent buffers and handled futures can correctly encode each other. Correctness means that our encodings preserve and reflect the observations of may- and must-convergence, and as a consequence also yields soundness of the encodings with respect to a contextually defined notion of program equivalence. While these translations encode blocking into queuing and waiting, we also describe an adequate encoding of buffers in a calculus without handles, which is more low-level and uses busy-waiting instead of blocking. Furthermore we demonstrate that our correctness concept applies to the whole compilation process from high-level to low-level concurrent languages, by translating the calculus with buffers, handled futures and data constructors into a small core language without those constructs.

- Adequacy of compositional translations for observational semantics (2009)
- We investigate methods and tools for analyzing translations between programming languages with respect to observational semantics. The behavior of programs is observed in terms of may- and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extensions.

- Adequacy of compositional translations for observational semantics (2008)
- We investigate methods and tools for analyzing translations between programming languages with respect to observational semantics. The behavior of programs is observed in terms of may- and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extensions.

- Adequacy of compositional translations for observational semantics (2008)
- We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extensions.

- Adequacy of compositional translations for observational semantics (2008)
- We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and mustconvergence in arbitrary contexts, and adequacy of translations, i.e., the reflection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extensions.