### Refine

#### Year of publication

#### Document Type

- Article (5017)
- Working Paper (1541)
- Doctoral Thesis (865)
- Book (745)
- Part of a Book (531)
- Preprint (416)
- Periodical Parts (301)
- Conference Proceeding (291)
- Report (138)
- Other (134)

#### Language

- English (10089) (remove)

#### Keywords

- Deutschland (101)
- Englisch (97)
- Syntax (94)
- Deutsch (69)
- new species (68)
- Phonologie (56)
- USA (56)
- Semantik (54)
- taxonomy (50)
- Geldpolitik (47)

#### Institute

- Physik (1051)
- Medizin (1019)
- Center for Financial Studies (CFS) (689)
- Wirtschaftswissenschaften (587)
- Biochemie und Chemie (487)
- Biowissenschaften (429)
- Geowissenschaften (302)
- Extern (284)
- Informatik (252)
- Rechtswissenschaft (221)

- A Coupled RFQ-IH Combination for the Neutron Source FRANZ (2011)
- The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum is driven by a 2 MeV proton linac consisting of a 4-rod-radio-frequency-quadrupol (RFQ) and an 8 gap IH-DTL structure. RFQ and IH cavity will be powered by only one radio frequency (RF) amplifier to reduce costs. The RF-amplifier of the RFQ-IH combination is coupled into the RFQ. Internal inductive coupling along the axis connects the RFQ with the IH cavity ensuring the required power transition as well as a fixed phase relation between the two structures. The main acceleration of 120 keV up to 2.03 MeV will be reached by the RFQ-IH combination with 175 MHz and at a total length of 2.3 m. The losses in the RFQ-IH combination are about 200 kW.

- Reliability and current-adaptability studies of a 352 MHz, 17 MeV, continuous-wave injector for an accelerator-driven system (2010)
- EUROTRANS is a European research program for the transmutation of high level nuclear waste in an accelerator-driven system (ADS). As proposed, the driver linac needs to deliver a 2.5–4 mA, 600 MeV continuous-wave (CW) proton beam and later a 20 mA, 800 MeV one to the spallation target in the prototype-scale and industrial-scale demonstration phases, respectively. This paper is focusing on the conceptual studies performed with respect to the 17 MeV injector. First, the special beam dynamics strategies and methods, which have been developed and applied to design a current-variable injector up to 30 mA for allowing an easy upgrade without additional R&D costs, will be introduced. Then the error study made for evaluating the tolerance limits of the designed injector will be presented as well.

- Multiplicity fluctuations of identified hadrons in central Pb+Pb collisions at the CERN (2013)
- We report on the event-by-event multiplicity fluctuations of identified particles in central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. Employing a novel approach we unfolded the moments of the unknown multiplicity distributions of protons (p), kaons (K), pions (π) and electrons. Using these moments we reconstructed an excitation function of the fluctuation measure νdyn[A;B], with A and B denoting different particle types. Specifically, we reconstructed νdyn for the [p, π], [p, K] and [K, π] pairs. The energy dependence of νdyn is in agreement with previously published NA49 results on the related measure σdyn. Moreover, for [K; p] and [K;p] pairs, we discovered a dependence of the fluctuation measure νdyn on the phase space coverage (acceptance). Interestingly for the [p,π] case no significant acceptance dependence was observed. These observations provide a likely explanation of the reported differences between measurements of NA49 and those of STAR in central Au+Au collisions.

- Energy dependence of chemical fluctuations in p + p interactions from NA61/SHINE (2013)
- The study of energy and system size dependence of fluctuations of identified hadrons is one of the key goals of NA61/SHINE at the CERN SPS. Results may allow to discover the critical point (CP) of strongly interacting matter as well as to uncover properties of the onset of deconfinement (OD). Measured fluctuations are affected by numerous other effects like volume fluctuations and conservation laws. NA49 seems to observe fluctuations possibly related to the CP in collisions of medium size nuclei at the top SPS energy. However, this result will remain inconclusive until systematic data on energy and system size dependence will be available. Moreover, fluctuations in p+p as well as in Pb+Pb interactions should be better understood. In this contribution new results on multiplicity fluctuations of identified hadrons in p+p interactions at the CERN SPS energies will be presented. The NA61 data will be compared with the corresponding results on central Pb+Pb collisions of NA49 in the common acceptance region of both experiments. Furthermore, predictions of models (EPOS, UrQMD and HSD) for p+p interactions will be tested.

- Collision energy evolution of elliptic and triangular flow in a hybrid model (2013)
- While the existence of a strongly interacting state of matter, known as “quark-gluon plasma” (QGP), has been established in heavy ion collision experiments in the past decade, the task remains to map out the transition from the hadronic matter to the QGP. This is done by measuring the dependence of key observables (such as particle suppression and elliptic flow) on the collision energy of the heavy ions. This procedure, known as "beam energy scan", has been most recently performed at the Relativistic Heavy Ion Collider (RHIC). Utilizing a Boltzmann+hydrodynamics hybrid model, we study the collision energy dependence of initial state eccentricities and the final state elliptic and triangular flow. This approach is well suited to investigate the relative importance of hydrodynamics and hadron transport at different collision energies.

- Effective theory of Yang-Mills thermodynamics (2013)
- We derive the Polyakov-loop thermodynamic potential in the perturbative approach to pure SU(3) Yang-Mills theory. The potential expressed in terms of the Polyakov loop in the fundamental representation corresponds to that of the strong-coupling expansion, of which the relevant coefficients of the gluon energy distribution are specified by characters of the SU(3) group. At high temperature, the potential exhibits the correct asymptotic behavior, whereas at low temperature, it disfavors gluons as appropriate dynamical degrees of freedom. To quantify the Yang-Mills thermodynamics in confined phase, we introduce a hybrid approach which matches the effective gluon potential to that of glueballs, constrained by the QCD trace anomaly in terms of dilaton fields.

- Dynamic enhancement of fluctuation signals at the QCD phase transition (2013)
- We study the impact of nonequilibrium effects on the relevant signals within a chiral fluid dynamics model including explicit propagation of the Polyakov loop. An expanding heat bath of quarks is coupled to the Langevin dynamics of the order parameter fields. The model is able to describe relaxational processes, including critical slowing down and the enhancement of soft modes near the critical point. At the first-order phase transition we observe domain formation and phase coexistence in the sigma and Polyakov loop field leading to a significant amount of clumping in the energy density. This effect gets even more pronounced if we go to systems at finite baryon density. Here the formation of high-density clusters could provide an important observable signal for upcoming experiments at FAIR and NICA.We conclude that improving our understanding of dynamical symmetry breaking is important to give realistic estimates for experimental observables connected to the QCD phase transition.

- Correlated D-meson decays competing against thermal QGP dilepton radiation (2013)
- The QGP that might be created in ultrarelativistic heavy-ion collisions is expected to radiate thermal dilepton radiation. However, this thermal dilepton radiation interferes with dileptons originating from hadron decays. In the invariant mass region between the f and J=y peak (1GeV <= M l+l <=. 3GeV) the most substantial background of hadron decays originates from correlated DD¯ -meson decays. We evaluate this background using a Langevin simulation for charm quarks. As background medium we utilize the well-tested UrQMD-hybrid model. The required drag and diffusion coefficients are taken from a resonance approach. The decoupling of the charm quarks from the hot medium is performed at a temperature of 130MeV and as hadronization mechanism a coalescence approach is chosen. This model for charm quark interactions with the medium has already been successfully applied to the study of the medium modification and the elliptic flow at FAIR, RHIC and LHC energies. In this proceeding we present our results for the dilepton radiation from correlated D¯D decays at RHIC energy in comparison to PHENIX measurements in the invariant mass range between 1 and 3 GeV using different interaction scenarios. These results can be utilized to estimate the thermal QGP radiation.

- Studies of dilepton production in coarse-grained transport dynamics (2013)
- As microscopic transport models usually have difficulties to deal with in-medium effects in heavy-ion collisions, we present an alternative approach that uses coarse-grained output from transport calculations with the UrQMD model to determine thermal dilepton emission rates. A four-dimensional space-time grid is set up to extract local baryon and energy densities, respectively temperature and baryon chemical potential. The lepton pair emission is then calculated for each cell of the grid using thermal equilibrium rates. In the current investigation we inlcude the medium-modified r spectral function by Eletsky et al., as well as contributions from the QGP and four-pion interactions for high collision energies. First dielectron invariant mass spectra for Au+Au collisions at 1.25 AGeV and for dimuons from In+In at 158 AGeV are shown. At 1.25 AGeV a clear enhancement of the total dilepton yield as compared to a pure transport result is observed. In the latter case, we compare our outcome with the NA60 dimuon excess data. Here a good agreement is achieved, but the yield in the low-mass tail is underestimated. In general the results show that the coarse-graining approach gives reasonable results and can cover a broad collision-energy range.

- QCD equation of state from a chiral hadronic model including quark degrees of freedom (2013)
- This work presents an effective model for strongly interacting matter and the QCD equation of state (EoS). The model includes both hadron and quark degrees of freedom and takes into account the transition of chiral symmetry restoration as well as the deconfinement phase transition. At low temperatures T and baryonic densities ρB a hadron resonance gas is described using a SU(3)-flavor sigma-omega model and a quark phase is introduced in analogy to PNJL models for higher T and ρB. In this way, the correct asymptotic degrees of freedom are used in a wide range of T and ρB. Here, results of this model concerning the chiral and deconfinement phase transitions and thermodynamic model properties are presented. Large hadron resonance multiplicities in the transition region emphasize the importance of heavy-mass resonance states in this region and their impact on the chiral transition behavior. The resulting phase diagram of QCD matter at small chemical potentials is in line with latest lattice QCD and thermal model results.