### Refine

#### Year of publication

#### Document Type

- Article (418)
- Preprint (355)
- Doctoral Thesis (181)
- Conference Proceeding (109)
- Master's Thesis (9)
- Working Paper (8)
- Diplom Thesis (6)
- Bachelor Thesis (4)
- Report (4)
- Lecture (3)

#### Language

- English (1100) (remove)

#### Keywords

- Kollisionen schwerer Ionen (29)
- heavy ion collisions (23)
- Kollisionen schwerer Ionen (18)
- heavy ion collisions (18)
- Quark-Gluon-Plasma (17)
- quark-gluon plasma (12)
- Quark Gluon Plasma (9)
- equation of state (9)
- quark gluon plasma (9)
- Hadron (8)

#### Institute

- Physik (1100) (remove)

- Alpha-induced production cross sections of 77Kr and 77Br and thick target yield of 80Br (2014)
- This work derived the value of α-induced production cross sections of 77Kr and 77Br at α-energies of 12 MeV and 14 MeV, the thick target yields of 77Kr and 77Br at α-energies of 11.19 MeV, 13 MeV and 15.1 MeV and the thick target yield of 80Br as well as 80mBr at an α-energy of 15.1 MeV using the activation technique...

- Proton-capture reactions in thermonuclear supernovae and the p process (2014)
- XIII Nuclei in the Cosmos, 7-11 July, 2014 Debrecen, Hungary. As an alternative production scenario to the so-called g process, the most abundant p nucleus 92Mo may be produced by a chain of proton-capture reactions in supernovae type Ia. The reactions 90Zr(p,g) and 91Nb(p,g) are the most important reactions in this chain. We have measured the first reaction using high-resolution in-beam g-spectroscopy at HORUS, Cologne, Germany, to contribute to the existing experimental data base. So far, we only investigated the high-energy part of the Gamow window and the analysis is still in progress. We plan to study the second reaction in standard kinematics at the FRANZ facility, Frankfurt, Germany. Current developments at FRANZ will be explained in detail.

- From tomograms to molecular structure : image processing in cryo-electron tomography (2014)
- Cryo-electron tomography (CET) is a unique technique to visualize biological objects under near-to-native conditions at near-atomic resolution. CET provides three-dimensional (3D) snapshots of the cellular proteome, in which the spatial relations between macromolecular complexes in their near native cellular context can be explored. Due to the limitation of the electron dose applicable on biological samples, the achievable resolution of a tomogram is restricted to a few nanometers, higher resolution can be achieved by averaging of structures occurring in multiples. For this purpose, computational techniques such as template matching, sub-tomogram averaging and classification are essential for a meaningful processing of CET data. This thesis introduces the techniques of template matching and sub-tomogram averaging and their applications on real biological data sets. Subsequently, the problem of reference bias, which restricts the applicability of those techniques, is addressed. Two methods that estimate the reference bias in Fourier and real space are demonstrated. The real space method, which we have named the “M-free” score, provides a reliable estimation of the reference bias, which gives access to the reliability of the template matching or sub-tomogram averaging process. Thus, the “M-free” score makes those approaches more applicable to structural biology. Furthermore, a classification algorithm based on Neural Networks (NN) called “KerDenSOM3D” is introduced, which is implemented in 3D and compensates for the missing-wedge. This approach helps extracting different structural states of macromolecular complexes or increasing the class purity of data sets by eliminating outliers. A comprehensive comparison with other classification methods shows superior performance of KerDenSOM3D.

- Microwave radar imaging of heterogeneous breast tissue integrating a priori information (2014)
- Conventional radar-based image reconstruction techniques fail when they are applied to heterogeneous breast tissue, since the underlying in-breast relative permittivity is unknown or assumed to be constant. This results in a systematic error during the process of image formation. A recent trend in microwave biomedical imaging is to extract the relative permittivity from the object under test to improve the image reconstruction quality and thereby to enhance the diagnostic assessment. In this paper, we present a novel radar-based methodology for microwave breast cancer detection in heterogeneous breast tissue integrating a 3D map of relative permittivity as a priori information. This leads to a novel image reconstruction formulation where the delay-and-sum focusing takes place in time rather than range domain. Results are shown for a heterogeneous dense (class-4) and a scattered fibroglandular (class-2) numerical breast phantom using Bristol's 31-element array configuration.

- Measurement of the 94Mo(γ,n) reaction by Coulomb dissociation and related post-processing nucleosynthesis simulations for the p-process (2014)
- The elements in the universe are mainly produced by charged-particle fusion reactions and neutron-capture reactions. About 35 proton-rich isotopes, the p-nuclei, cannot be produced via neutron-induced reactions. To date, nucleosynthesis simulations of possible production sites fail to reproduce the p-nuclei abundances observed in the solar system. In particular, the origin of the light p-nuclei 92Mo, 94Mo, 96Ru and 98Ru is little understood. The nucleosynthesis simulations rely on assumptions about the seed abundance distributions, the nuclear reaction network and the astrophysical environment. This work addressed the nuclear data input. The key reaction 94Mo(g,n) for the production ratio of the p-nuclei 92Mo and 94Mo was investigated via Coulomb dissociation at the LAND/R3B setup at GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. A beam of 94Mo with an energy of 500 AMeV was directed onto a lead target. The neutron-dissociation reactions following the Coulomb excitation by virtual photons of the electromagnetic field of the target nucleus were investigated. All particles in the incoming and outgoing channels of the reaction were identified and their kinematics were determined in a complex analysis. The systematic uncertainties were analyzed by calculating the cross sections for all possible combinations of the data selection criteria. The integral Coulomb dissociation cross section of the reaction 94Mo(g,n) was determined to be (571 +- 14 (stat) +- 46 (syst) ) mb. The result was compared to the data obtained in a real photon experiment carried out at the Saclay linear accelerator. The ratio of the integral cross sections was found to be 0.63 +- 0.07, which is lower than the expected value of about 0.8. The nucleosynthesis of the light p-nuclei 92Mo, 94Mo, 96Ru and 98Ru was investigated in post-processing nucleosynthesis simulations within the NuGrid research platform. The impact of rate uncertainties of the most important production and destruction reactions was studied for a Supernova type II model. It could be shown that the light p-nuclei are mainly produced via neutron-dissociation reactions on heavier nuclei in the isotopic chains, and that the final abundances of these p-nuclei are determined by their main destruction reactions. The nucleosynthesis of 92Mo and 94Mo was also studied in different environments of a Supernova type Ia model. It was concluded that the maximum temperature and the duration of the high temperature phase determine the final abundances of 92Mo and 94Mo.

- Development and test of a prototype for the PANDA Barrel DIRC detector at FAIR (2014)
- The PANDA experiment at FAIR will perform world class physics studies using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. A rich physics program requires very good particle identification (PID). Charged hadron PID for the barrel section of the target spectrometer has to cover the angular range of 22-140° and separate pions from kaons for momenta up to 3.5 GeV/c with a separation power of at least 3 standard deviations. The system that will provide it has to be thin and operate in a strong magnetic field. A ring imaging Cherenkov detector using the DIRC principle meets those requirements. The design of the PANDA Barrel DIRC is based on the successful BABAR DIRC counter with several important changes to improve the performance and optimize the costs. The design options are being studied in detailed Monte Carlo simulation, and implemented in increasingly complex system prototypes and tested in particle beams. Before building the full system prototypes the radiator bars and lenses are measured on the test benches. The performance of the DIRC prototype was quantified in terms of the single photon Cherenkov angle resolution and the photon yield. Results for two full system prototypes will be presented. The prototype in 2011 aimed at investigating the full size expansion volume. It was found that the resolution for this configuration is at the level of in good agreement with ray tracing simulation results. A more complex prototype, tested in 2012, provided the first experience with a compact fused silica prism expansion volume, a wide radiator plate, and several advanced lens options for the focusing system. The performance of the baseline configuration of the prototype with a standard lens and an air gap met the requirements for the PANDA PID for most of the polar angle range but failed at polar angles around 90° due to photon loss at the air gap. Measurements with a prototype high-refractive index compound lens without an air gap at a polar angle of 128° beam angle showed a good resolution of σΘC = 11.8 ± 0.7 mrad and a high photon yield of Nph = 26.1 ± 0.4. Even at polar angles close to 90° the photon yield with this lens exceeded 15 detected photons per particle, meeting the PANDA Barrel DIRC PID requirements for the entire phase space and demonstrating that the compact focusing DIRC is a very promising option for PANDA.

- Measurement of the quasi free np → npπ+π− and np → ppπ−π0 reactions at 1.25 GeV with HADES (2014)
- We present the results of two-pion production in tagged quasi-free np collisions at a deutron incident beam energy of 1.25 GeV/c measured with the High-Acceptance Di-Electron Spectrometer (HADES) installed at GSI. The specific acceptance of HADES allowed for the first time to obtain high-precision data on π+π− and π−π0 production in np collisions in a region corresponding to large transverse momenta of the secondary particles. The obtained differential cross section data provide strong constraints on the production mechanisms and on the various baryon resonance contributions (∆∆, N(1440), N(1520), ∆(1600)). The invariant mass and angular distributions from the np → npπ+π −and np → ppπ−π0 reactions are compared with different theoretical model predictions.

- The nucleosynthesis of heavy elements in Stars: the key isotope 25Mg (2014)
- We have measured the radiative neutron-capture cross section and the total neutron-induced cross section of one of the most important isotopes for the s process, the 25Mg. The measurements have been carried out at the neutron time-of-flight facilities n_TOF at CERN (Switzerland) and GELINA installed at the EC-JRC-IRMM (Belgium). The cross sections as a function of neutron energy have been measured up to approximately 300 keV, covering the energy region of interest to the s process. The data analysis is ongoing and preliminary results show the potential relevance for the s process.

- Ab-initio simulations of pressure effects on structural and electronic properties of iron based superconductors (2014)
- The ab-initio molecular dynamics framework has been the cornerstone of computational solid state physics in the last few decades. Although it is already a mature field it is still rapidly developing to accommodate the growth in solid state research as well as to efficiently utilize the increase in computing power. Starting from the first principles, the ab-initio molecular dynamics provides essential information about structural and electronic properties of matter under various external conditions. In this thesis we use the ab-initio molecular dynamics to study the behavior of BaFe2As2 and CaFe2As2 under the application of external pressure. BaFe2As2 and CaFe2As2 belong to the family of iron based superconductors which are a novel and promising superconducting materials. The application of pressure is one of two key methods by which electronic and structural properties of iron based superconductors can be modified, the other one being doping (or chemical pressure). In particular, it has been noted that pressure conditions have an important effect, but their exact role is not fully understood. To better understand the effect of different pressure conditions we have performed a series of ab-initio simulations of pressure application. In order to apply the pressure with arbitrary stress tensor we have developed a method based on the Fast Inertial Relaxation Engine, whereby the unit cell and the atomic positions are evolved according to the metadynamical equations of motion. We have found that the application of hydrostatic and c axis uniaxial pressure induces a phase transition from the magnetically ordered orthorhombic phase to the non-magnetic collapsed tetragonal phase in both BaFe2As2 and CaFe2As2. In the case of BaFe2As2, an intermediate tetragonal non-magnetic tetragonal phase is observed in addition. Application of the uniaxial pressure parallel to the c axis reduces the critical pressure of the phase transition by an order of magnitude, in agreement with the experimental findings. The in-plane pressure application did not result in transition to the non-magnetic tetragonal phase and instead, rotation of the magnetic order direction could be observed. This is discussed in the context of Ginzburg-Landau theory. We have also found that the magnetostructural phase transition is accompanied by a change in the Fermi surface topology, whereby the hole cylinders centered around the Gamma point disappear, restricting the possible Cooper pair scattering channels in the tetragonal phase. Our calculations also permit us to estimate the bulk moduli and the orthorhombic elastic constants of BaFe2As2 and CaFe2As2. To study the electronic structure in systems with broken translational symmetry, such as doped iron based superconductors, it is necessary to develop a method to unfold the complicated bandstructures arising from the supercell calculations. In this thesis we present the unfolding method based on group theoretical techniques. We achieve the unfolding by employing induced irreducible representations of space groups. The unique feature of our method is that it treats the point group operations on an equal footing with the translations. This permits us to unfold the bandstructures beyond the limit of translation symmetry and also formulate the tight-binding models of reduced dimensionality if certain conditions are met. Inclusion of point group operations in the unfolding formalism allows us to reach important conclusions about the two versus one iron picture in iron based superconductors. And finally, we present the results of ab-initio structure prediction in the cases of giant volume collapse in MnS2 and alkaline doped picene. In the case of MnS2, a previously unobserved high pressure arsenopyrite structure of MnS2 is predicted and stability regions for the two competing metastable phases under pressure are determined. In the case of alkaline doped picene, crystal structures with different levels of doping were predicted and used to study the role of electronic correlations.

- Aspects of electron correlations in two-dimensional metals (2015)
- Landau's Fermi liquid theory has been the main tool for investigating interactions between fermions at low energies for more than 50 years. It has been successful in describing, amongst other things, the mass enhancement in ³He and the thermodynamics of a large class of metals. Whilst this in itself is remarkable given the phenomenological nature of the original theory, experiments have found several materials, such as some superconducting and heavy-fermion materials, which cannot be described within the Fermi liquid picture. Because of this, many attempts have been made to understand these ''non Fermi liquid'' phases from a theoretical perspective. This will be the broad topic of the first part of this thesis and will be investigated in Chapter 2, where we consider a two-dimensional system of electrons interacting close to a Fermi surface through a damped gapless bosonic field. Such systems are known to give rise to non Fermi liquid behaviour. In particular we will consider the Ising-nematic quantum critical point of a two-dimensional metal. At this quantum critical point the Fermi liquid theory breaks down and the fermionic self-energy acquires the non Fermi liquid like {omega}²/³ frequency dependence at lowest order and within the canonical Hertz-Millis approach to quantum criticality of interacting fermions. Previous studies have however shown that, due to the gapless nature of the electronic single-particle excitations, the exponent of 2/3 is modified by an anomalous dimension {eta_psi} which changes, not only the exponent of the frequency dependence, but also the exponent of the momentum dependence of the self-energy. These studies also show that the usual 1/N-expansion breaks down for this problem. We therefore develop an alternative approach to calculate the anomalous dimensions based on the functional renormalization group, which will be introduced in the introductory Chapter 1. Doing so we will be able to calculate both the anomalous dimension renormalizing the exponent of the frequency dependence and the exponent renormalizing the momentum dependence of the self-energy. Moreover we will see that an effective interaction between the bosonic fields, mediated by the fermions, is crucial in order to obtain these renormalizations. In the second part of this thesis, presented in Chapter 3, we return to Fermi liquid theory itself. Indeed, despite its conceptual simplicity of expressing interacting electrons through long-lived quasi-particles which behave in a similar fashion as free particles, albeit with renormalized parameters, it remains an active area of research. In particular, in order to take into account the full effects of interactions between quasi-particles, it is crucial to consider specific microscopic models. One such effect, which is not captured by the phenomenological theory itself, is the appearance of non-analytic terms in the expansions of various thermodynamic quantities such as heat-capacity and susceptibility with respect to an external magnetic field, temperature, or momentum. Such non-analyticities may have a large impact on the phase diagram of, for example, itinerant electrons near a ferromagnetic quantum phase transition. Inspired by this we consider a system of interacting electrons in a weak external magnetic field within Fermi liquid theory. For this system we calculate various quasi-particle properties such as the quasi-particle residue, momentum-renormalization factor, and a renormalization factor which relates to the self-energy on the Fermi surface. From these renormalization factors we then extract physical quantities such as the renormalized mass and renormalized electron Lande g-factor. By calculating the renormalization factors within second order perturbation theory numerically and analytically, using a phase-space decomposition, we show that all renormalization factors acquire a non-analytic term proportional to the absolute value of the magnetic field. We moreover explicitly calculate the prefactors of these terms and find that they are all universal and determined by low-energy scattering processes which we classify. We also consider the non-analytic contributions to the same renormalization factors at finite temperatures and for finite external frequencies and discuss possible experimental ways of measuring the prefactors. Specifically we find that the tunnelling density of states and the conductivity acquire a non-analytic dependence on magnetic field (and temperature) coming from the momentum-renormalization factor. For the latter we discuss how this relates to previous works which show the existence of non-analyticities in the conductivity at first order in the interaction.