### Refine

#### Year of publication

- 2007 (58) (remove)

#### Document Type

- Doctoral Thesis (24)
- Article (17)
- Conference Proceeding (7)
- Periodical Parts (4)
- Diplom Thesis (3)
- Book (2)
- Report (1)

#### Keywords

- Quantenchromodynamik (2)
- Antenne (1)
- Black holes (1)
- Bose Einstein condensation (1)
- Bose-Einstein-Kondensation (1)
- CERN (1)
- CW (1)
- Confinement (1)
- Dauerstrichbetrieb (1)
- Dauerstrichbetrieb (1)

#### Institute

- Physik (58) (remove)

- That’s it : kleiner Leitfaden für Erstsemester ; WS 2007/08 (2007)
- Raus aus der Schule und rein ins Vergnügen. Nach 13 Jahren langweiligen Deutschunterrichts und unzähligen Politikstunden habt ihr es nun geschafft, an die Schwelle der unendlich hohen Treppe der Wissenschaft vorzuschreiten. ...

- Strong coupling expansion for Yang-Mills theory at finite temperature (2007)
- Euclidean strong coupling expansion of the partition function is applied to lattice Yang-Mills theory at finite temperature, i.e. for lattices with a compactified temporal direction. The expansions have a finite radius of convergence and thus are valid only for b <bc, where bc denotes the nearest singularity of the free energy on the real axis. The accessible temperature range is thus the confined regime up to the deconfinement transition. We have calculated the first few orders of these expansions of the free energy density as well as the screening masses for the gauge groups SU(2) and SU(3). The resulting free energy series can be summed up and corresponds to a glueball gas of the lowest mass glueballs up to the calculated order. Our result can be used to fix the lower integration constant for Monte Carlo calculations of the thermodynamic pressure via the integral method, and shows from first principles that in the confined phase this constant is indeed exponentially small. Similarly, our results also explain the weak temperature dependence of glueball screening masses below Tc, as observed in Monte Carlo simulations. Possibilities and difficulties in extracting bc from the series are discussed.

- Exploring the QCD phase diagram (2007)
- Lattice simulations employing reweighting and Taylor expansion techniques have predicted a (m;T)-phase diagram according to general expectations, with an analytic quark-hadron crossover at m =0 turning into a first order transition at some critical chemical potential mE. By contrast, recent simulations using imgainary m followed by analytic continuation obtained a critical structure in the fmu;d;ms;T;mg parameter space favouring the absence of a critical point and first order line. I review the evidence for the latter scenario, arguing that the various raw data are not inconsistent with each other. Rather, the discrepancy appears when attempting to extract continuum results from the coarse (Nt =4) lattices simulated so far, and can be explained by cut-off effects. New (as yet unpublished) data are presented, which for Nf = 3 and on Nt = 4 confirm the scenario without a critical point. Moreover, simulations on finer Nt = 6 lattices show that even if there is a critical point, continuum extrapolation moves it to significantly larger values of mE than anticipated on coarse lattices.

- Twisted mass QCD at finite temperature (2007)
- We discuss the use of Wilson fermions with twisted mass for simulations of QCD thermodynamics. As a prerequisite for a future analysis of the finite-temperature transition making use of automatic O(a) improvement, we investigate the phase structure in the space spanned by the hopping parameter k , the coupling b , and the twisted mass parameter m. We present results for Nf = 2 degenerate quarks on a 163×8 lattice, for which we investigate the possibility of an Aoki phase existing at strong coupling and vanishing m, as well as of a thermal phase transition at moderate gauge couplings and non-vanishing m.

- Fermionic fields in the pseudoparticle approach (2007)
- The pseudoparticle approach is a numericalmethod to compute path integrals without discretizing spacetime. The basic idea is to consider only those field configurations, which can be represented as a linear superposition of a small number of localized building blocks (pseudoparticles), and to replace the functional integration by an integration over the pseudoparticle degrees of freedom. In previous papers we have successfully applied the pseudoparticle approach to SU(2) Yang-Mills theory. In this work we discuss the inclusion of fermionic fields in the pseudoparticle approach. To test our method, we compute the phase diagram of the 1+1-dimensional Gross-Neveu model in the large-N limit as well as the chiral condensate in the crystal phase.

- Signals of the QCD Phase Transition in the Heavens (2007)
- The modern phase diagram of strongly interacting matter reveals a rich structure at high-densities due to phase transitions related to the chiral symmetry of quantum chromodynamics (QCD) and the phenomenon of color superconductivity. These exotic phases have a significant impact on high-density astrophysics, such as the properties of neutron stars, and the evolution of astrophysical systems as proto-neutron stars, core-collapse supernovae and neutron star mergers. Most recent pulsar mass measurements and constraints on neutron star radii are critically discussed. Astrophysical signals for exotic matter and phase transitions in high-density matter proposed recently in the literature are outlined. A strong first order phase transition leads to the emergence of a third family of compact stars besides white dwarfs and neutron stars. The different microphysics of quark matter results in an enhanced r-mode stability window for rotating compact stars compared to normal neutron stars. Future telescope and satellite data will be used to extract signals from phase transitions in dense matter in the heavens and will reveal properties of the phases of dense QCD. Spectral line profiles out of x-ray bursts will determine the mass-radius ratio of compact stars. Gravitational wave patterns from collapsing neutron stars or neutron star mergers will even be able to constrain the stiffness of the quark matter equation of state. Future astrophysical data can therefore provide a crucial cross-check to the exploration of the QCD phase diagram with the heavy-ion program of the CBM detector at the FAIR facility.

- Status and promise of particle interferometry in heavy-ion collisions (2007)
- After five years of running at RHIC, and on the eve of the LHC heavy-ion program, we highlight the status of femtoscopic measurements. We emphasize the role interferometry plays in addressing fundamental questions about the state of matter created in such collisions, and present an enumerated list of measurements, analyses and calculations that are needed to advance the field in the coming years.

- Measuring shear viscosity using correlations (2007)
- Measurements of transverse momentum fluctuations can be used to determine the shear viscosity [1]. We use current data to estimate the viscosity-to-entropy ratio in the range from 0.08 to 0.3, and discuss how future measurements can reduce this uncertainty.