### Refine

#### Year of publication

#### Document Type

- Article (183)
- Preprint (157)
- Working Paper (1)

#### Keywords

- Kollisionen schwerer Ionen (28)
- heavy ion collisions (22)
- Kollisionen schwerer Ionen (12)
- heavy ion collisions (11)
- Quark-Gluon-Plasma (10)
- Quark Gluon Plasma (8)
- QGP (7)
- UrQMD (7)
- equation of state (7)
- quark-gluon plasma (7)

#### Institute

- Transition to resonance-rich matter in heavy ion collisions at RHIC energies (2000)
- The equilibration of hot and dense nuclear matter produced in the central region in central Au+Au collisions at square root s = 200A GeV is studied within the microscopic transport model UrQMD. The pressure here becomes isotropic at t approx 5 fm/c. Within the next 15 fm/c the expansion of the matter proceeds almost isentropically with the entropy per baryon ratio S/A approx 150. During this period the equation of state in the (P, epsilon)-plane has a very simple form, P = 0.15 epsilon. Comparison with the statistical model (SM) of an ideal hadron gas reveals that the time of approx 20 fm/c may be too short to attain the fully equilibrated state. Particularly, the fractions of resonances are overpopulated in contrast to the SM values. The creation of such a long-lived resonance-rich state slows down the relaxation to chemical equilibrium and can be detected experimentally.

- Chemical freeze-out parameters at RHIC from microscopic model calculations (2001)
- The relaxation of hot nuclear matter to an equilibrated state in the central zone of heavy-ion collisions at energies from AGS to RHIC is studied within the microscopic UrQMD model. It is found that the system reaches the (quasi)equilibrium stage for the period of 10-15 fm/c. Within this time the matter in the cell expands nearly isentropically with the entropy to baryon ratio S/A = 150 - 170. Thermodynamic characteristics of the system at AGS and at SPS energies at the endpoints of this stage are very close to the parameters of chemical and thermal freeze-out extracted from the thermal fit to experimental data. Predictions are made for the full RHIC energy square root s = 200$ AGeV. The formation of a resonance-rich state at RHIC energies is discussed.

- Microscopic calculations of stopping and flow from 160AMeV to 160AGeV (1996)
- The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Effects of a density dependent pole of the rho-meson propagator on dilepton spectra are studied for different systems and centralities at CERN energies.

- Transport calculation of dilepton production at ultrarelativistic energies (1999)
- Dilepton spectra are calculated within the microscopic transport model UrQMD and compared to data from the CERES experiment. The invariant mass spectra in the region between 300 MeV and 600 MeV depend strongly on the mass dependence of the rho meson decay width which is not sufficiently determined by the Vector Meson Dominance model. A consistent explanation of both the recent Pb+Au data and the proton induced data can be given without additional medium effects.

- Equilibrium and non-equilibrium effects in relativistic heavy ion collisions (1999)
- The hypothesis of local equilibrium (LE) in relativistic heavy ion collisions at energies from AGS to RHIC is checked in the microscopic transport model. We find that kinetic, thermal, and chemical equilibration of the expanding hadronic matter is nearly reached in central collisions at AGS energy for t >_ fm/c in a central cell. At these times the equation of state may be approximated by a simple dependence P ~= (0.12-0.15) epsilon. Increasing deviations of the yields and the energy spectra of hadrons from statistical model values are observed for increasing bombarding energies. The origin of these deviations is traced to the irreversible multiparticle decays of strings and many-body (N >_ 3) decays of resonances. The violations of LE indicate that the matter in the cell reaches a steady state instead of idealized equilibrium. The entropy density in the cell is only about 6% smaller than that of the equilibrium state.

- Local equilibrium in heavy ion collisions. Microscopic model versus statistical model analysis (1999)
- The assumption of local equilibrium in relativistic heavy ion collisions at energies from 10.7 AGeV (AGS) up to 160 AGeV (SPS) is checked in the microscopic transport model. Dynamical calculations performed for a central cell in the reaction are compared to the predictions of the thermal statistical model. We find that kinetic, thermal and chemical equilibration of the expanding hadronic matter are nearly approached late in central collisions at AGS energy for t >= 10 fm/c in a central cell. At these times the equation of state may be approximated by a simple dependence P ~= (0.12-0.15) epsilon. Increasing deviations of the yields and the energy spectra of hadrons from statistical model values are observed for increasing energy, 40 AGeV and 160 AGeV. These violations of local equilibrium indicate that a fully equilibrated state is not reached, not even in the central cell of heavy ion collisions at energies above 10 AGeV. The origin of these findings is traced to the multiparticle decays of strings and many-body decays of resonances.

- Signatures of dense hadronic matter in ultrarelativistic heavy ion reactions (1996)
- The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Dilepton spectra are calculated with and without shifting the rho pole. Except for S+Au collisions our calculations reproduce the CERES data.

- Collective flow in heavy ion reactions and the properties of excited nuclear matter (1996)
- Quantum Molecular Dynamics (QMD) calculations of central collisions between heavy nuclei are used to study fragment production and the creation of collective flow. It is shown that the final phase space distributions are compatible with the expectations from a thermally equilibrated source, which in addition exhibits a collective transverse expansion. However, the microscopic analyses of the transient states in the intermediate reaction stages show that the event shapes are more complex and that equilibrium is reached only in very special cases but not in event samples which cover a wide range of impact parameters as it is the case in experiments. The basic features of a new molecular dynamics model (UQMD) for heavy ion collisions from the Fermi energy regime up to the highest presently available energies are outlined.

- Extracting the equation of state from a microscopic non-equilibrium model (1996)
- We study the thermodynamic properties of infinite nuclear matter with the Ultrarelativistic Quantum Molecular Dynamics (URQMD), a semiclassical transport model, running in a box with periodic boundary conditions. It appears that the energy density rises faster than T4 at high temperatures of T approx. 200 - 300 MeV. This indicates an increase in the number of degrees of freedom. Moreover, We have calculated direct photon production in Pb+Pb collisions at 160 GeV/u within this model. The direct photon slope from the microscopic calculation equals that from a hydrodynamical calculation without a phase transition in the equation of state of the photon source.

- Strangeness enhancement in heavy ion collisions - evidence for quark-gluon-matter? (1999)
- The centrality dependence of (multi-)strange hadron abundances is studied for Pb(158 AGeV)Pb reactions and compared to p(158 GeV)Pb collisions. The microscopic transport model UrQMD is used for this analysis. The predicted Lambda/pi-, Xi-/pi- and Omega-/pi- ratios are enhanced due to rescattering in central Pb-Pb collisions as compared to peripheral Pb-Pb or p-Pb collisions. A reduction of the constituent quark masses to the current quark masses m_s \sim 230 MeV, m_q \sim 10 MeV, as motivated by chiral symmetry restoration, enhances the hyperon yields to the experimentally observed high values. Similar results are obtained by an ad hoc overall increase of the color electric field strength (effective string tension of kappa=3 GeV/fm). The enhancement depends strongly on the kinematical cuts. The maximum enhancement is predicted around midrapidity. For Lambda's, strangeness suppression is predicted at projectile/target rapidity. For Omega's, the predicted enhancement can be as large as one order of magnitude. Comparisons of Pb-Pb data to proton induced asymmetric (p-A) collisions are hampered due to the predicted strong asymmetry in the various rapidity distributions of the different (strange) particle species. In p-Pb collisions, strangeness is locally (in rapidity) not conserved. The present comparison to the data of the WA97 and NA49 collaborations clearly supports the suggestion that conventional (free) hadronic scenarios are unable to describe the observed high (anti-)hyperon yields in central collisions. The doubling of the strangeness to nonstrange suppression factor, gamma_s \approx 0.65, might be interpreted as a signal of a phase of nearly massless particles.