Refine
Keywords
- Data science (2)
- Machine-learning (2)
- Bioinformatics (1)
- Chronification (1)
- Clinical genetics (1)
- Clustering (1)
- Cold pain (1)
- DNA methylation (1)
- Diagnostic markers (1)
- Functional clustering (1)
Institute
- Medizin (16)
- Pharmazie (3)
- Biochemie und Chemie (1)
- Biowissenschaften (1)
- Prediction of persistent post-surgery pain by preoperative cold pain sensitivity : biomarker development with machine-learning-derived analysis (2017)
- Background: To prevent persistent post-surgery pain, early identification of patients at high risk is a clinical need. Supervised machine-learning techniques were used to test how accurately the patients’ performance in a preoperatively performed tonic cold pain test could predict persistent post-surgery pain. Methods: We analysed 763 patients from a cohort of 900 women who were treated for breast cancer, of whom 61 patients had developed signs of persistent pain during three yr of follow-up. Preoperatively, all patients underwent a cold pain test (immersion of the hand into a water bath at 2–4 °C). The patients rated the pain intensity using a numerical ratings scale (NRS) from 0 to 10. Supervised machine-learning techniques were used to construct a classifier that could predict patients at risk of persistent pain. Results: Whether or not a patient rated the pain intensity at NRS=10 within less than 45 s during the cold water immersion test provided a negative predictive value of 94.4% to assign a patient to the "persistent pain" group. If NRS=10 was never reached during the cold test, the predictive value for not developing persistent pain was almost 97%. However, a low negative predictive value of 10% implied a high false positive rate. Conclusions: Results provide a robust exclusion of persistent pain in women with an accuracy of 94.4%. Moreover, results provide further support for the hypothesis that the endogenous pain inhibitory system may play an important role in the process of pain becoming persistent.
- Machine learning in pain research (2018)
- Pain and pain chronification are incompletely understood and unresolved medical problems that continue to have a high prevalence. It has been accepted that pain is a complex phenomenon. Contemporary methods of computational science can use complex clinical and experimental data to better understand the complexity of pain. Among data science techniques, machine learning is referred to as a set of methods that can automatically detect patterns in data and then use the uncovered patterns to predict or classify future data, to observe structures such as subgroups in the data, or to extract information from the data suitable to derive new knowledge. Together with (bio)statistics, artificial intelligence and machine learning aim at learning from data. ...
- Multimodal distribution of human cold pain thresholds (2015)
- Background: It is assumed that different pain phenotypes are based on varying molecular pathomechanisms. Distinct ion channels seem to be associated with the perception of cold pain, in particular TRPM8 and TRPA1 have been highlighted previously. The present study analyzed the distribution of cold pain thresholds with focus at describing the multimodality based on the hypothesis that it reflects a contribution of distinct ion channels. Methods: Cold pain thresholds (CPT) were available from 329 healthy volunteers (aged 18 - 37 years; 159 men) enrolled in previous studies. The distribution of the pooled and log-transformed threshold data was described using a kernel density estimation (Pareto Density Estimation (PDE)) and subsequently, the log data was modeled as a mixture of Gaussian distributions using the expectation maximization (EM) algorithm to optimize the fit. Results: CPTs were clearly multi-modally distributed. Fitting a Gaussian Mixture Model (GMM) to the log-transformed threshold data revealed that the best fit is obtained when applying a three-model distribution pattern. The modes of the identified three Gaussian distributions, retransformed from the log domain to the mean stimulation temperatures at which the subjects had indicated pain thresholds, were obtained at 23.7 °C, 13.2 °C and 1.5 °C for Gaussian #1, #2 and #3, respectively. Conclusions: The localization of the first and second Gaussians was interpreted as reflecting the contribution of two different cold sensors. From the calculated localization of the modes of the first two Gaussians, the hypothesis of an involvement of TRPM8, sensing temperatures from 25 - 24 °C, and TRPA1, sensing cold from 17 °C can be derived. In that case, subjects belonging to either Gaussian would possess a dominance of the one or the other receptor at the skin area where the cold stimuli had been applied. The findings therefore support a suitability of complex analytical approaches to detect mechanistically determined patterns from pain phenotype data.
- Computed ABC analysis for rational selection of most informative variables in multivariate data (2015)
- Objective: Multivariate data sets often differ in several factors or derived statistical parameters, which have to be selected for a valid interpretation. Basing this selection on traditional statistical limits leads occasionally to the perception of losing information from a data set. This paper proposes a novel method for calculating precise limits for the selection of parameter sets. Methods: The algorithm is based on an ABC analysis and calculates these limits on the basis of the mathematical properties of the distribution of the analyzed items. The limits implement the aim of any ABC analysis, i.e., comparing the increase in yield to the required additional effort. In particular, the limit for set A, the "important few", is optimized in a way that both, the effort and the yield for the other sets (B and C), are minimized and the additional gain is optimized. Results: As a typical example from biomedical research, the feasibility of the ABC analysis as an objective replacement for classical subjective limits to select highly relevant variance components of pain thresholds is presented. The proposed method improved the biological interpretation of the results and increased the fraction of valid information that was obtained from the experimental data. Conclusions: The method is applicable to many further biomedical problems including the creation of diagnostic complex biomarkers or short screening tests from comprehensive test batteries. Thus, the ABC analysis can be proposed as a mathematically valid replacement for traditional limits to maximize the information obtained from multivariate research data.
- Identification of molecular fingerprints in human heat pain thresholds by use of an interactive mixture model R toolbox (AdaptGauss) (2015)
- Biomedical data obtained during cell experiments, laboratory animal research, or human studies often display a complex distribution. Statistical identification of subgroups in research data poses an analytical challenge. Here were introduce an interactive R-based bioinformatics tool, called “AdaptGauss”. It enables a valid identification of a biologically-meaningful multimodal structure in the data by fitting a Gaussian mixture model (GMM) to the data. The interface allows a supervised selection of the number of subgroups. This enables the expectation maximization (EM) algorithm to adapt more complex GMM than usually observed with a noninteractive approach. Interactively fitting a GMM to heat pain threshold data acquired from human volunteers revealed a distribution pattern with four Gaussian modes located at temperatures of 32.3, 37.2, 41.4, and 45.4 °C. Noninteractive fitting was unable to identify a meaningful data structure. Obtained results are compatible with known activity temperatures of different TRP ion channels suggesting the mechanistic contribution of different heat sensors to the perception of thermal pain. Thus, sophisticated analysis of the modal structure of biomedical data provides a basis for the mechanistic interpretation of the observations. As it may reflect the involvement of different TRP thermosensory ion channels, the analysis provides a starting point for hypothesis-driven laboratory experiments.
- What do all the (human) micro-RNAs do? (2014)
- BACKGROUND: Micro-RNAs (miRNA) are attributed to the systems biological role of a regulatory mechanism of the expression of protein coding genes. Research has identified miRNAs dysregulations in several but distinct pathophysiological processes, which hints at distinct systems-biology functions of miRNAs. The present analysis approached the role of miRNAs from a genomics perspective and assessed the biological roles of 2954 genes and 788 human miRNAs, which can be considered to interact, based on empirical evidence and computational predictions of miRNA versus gene interactions. RESULTS: From a genomics perspective, the biological processes in which the genes that are influenced by miRNAs are involved comprise of six major topics comprising biological regulation, cellular metabolism, information processing, development, gene expression and tissue homeostasis. The usage of this knowledge as a guidance for further research is sketched for two genetically defined functional areas: cell death and gene expression. Results suggest that the latter points to a fundamental role of miRNAs consisting of hyper-regulation of gene expression, i.e., the control of the expression of such genes which control specifically the expression of genes. CONCLUSIONS: Laboratory research identified contributions of miRNA regulation to several distinct biological processes. The present analysis transferred this knowledge to a systems-biology level. A comprehensible and precise description of the biological processes in which the genes that are influenced by miRNAs are notably involved could be made. This knowledge can be employed to guide future research concerning the biological role of miRNA (dys-) regulations. The analysis also suggests that miRNAs especially control the expression of genes that control the expression of genes.
- Process pharmacology : a pharmacological data science approach to drug development and therapy (2016)
- A novel functional-genomics based concept of pharmacology that uses artificial intelligence techniques for mining and knowledge discovery in "big data" providing comprehensive information about the drugs’ targets and their functional genomics is proposed. In “process pharmacology”, drugs are associated with biological processes. This puts the disease, regarded as alterations in the activity in one or several cellular processes, in the focus of drug therapy. In this setting, the molecular drug targets are merely intermediates. The identification of drugs for therapeutic or repurposing is based on similarities in the high-dimensional space of the biological processes that a drug influences. Applying this principle to data associated with lymphoblastic leukemia identified a short list of candidate drugs, including one that was recently proposed as novel rescue medication for lymphocytic leukemia. The pharmacological data science approach provides successful selections of drug candidates within development and repurposing tasks.
- Pharmacoepigenetics of the role of DNA methylation in μ-opioid receptor expression in different human brain regions (2016)
- Aim: Exposure to opioids has been associated with epigenetic effects. Studies in rodents suggested a role of varying degrees of DNA methylation in the differential regulation of μ-opioid receptor expression across the brain. Methods: In a translational investigation, using tissue acquired postmortem from 21 brain regions of former opiate addicts, representing a human cohort with chronic opioid exposure, μ-opioid receptor expression was analyzed at the level of DNA methylation, mRNA and protein. Results & conclusion: While high or low μ-opioid receptor expression significantly correlated with local OPRM1 mRNA levels, there was no corresponding association with OPRM1 methylation status. Additional experiments in human cell lines showed that changes in DNA methylation associated with changes in μ-opioid expression were an order of magnitude greater than differences in brain. Hence, different degrees of DNA methylation associated with chronic opioid exposure are unlikely to exert a major role in the region-specificity of μ-opioid receptor expression in the human brain.
- A data science based standardized Gini index as a Lorenz dominance preserving measure of the inequality of distributions (2017)
- The Gini index is a measure of the inequality of a distribution that can be derived from Lorenz curves. While commonly used in, e.g., economic research, it suffers from ambiguity via lack of Lorenz dominance preservation. Here, investigation of large sets of empirical distributions of incomes of the World’s countries over several years indicated firstly, that the Gini indices are centered on a value of 33.33% corresponding to the Gini index of the uniform distribution and secondly, that the Lorenz curves of these distributions are consistent with Lorenz curves of log-normal distributions. This can be employed to provide a Lorenz dominance preserving equivalent of the Gini index. Therefore, a modified measure based on log-normal approximation and standardization of Lorenz curves is proposed. The so-called UGini index provides a meaningful and intuitive standardization on the uniform distribution as this characterizes societies that provide equal chances. The novel UGini index preserves Lorenz dominance. Analysis of the probability density distributions of the UGini index of the World’s counties income data indicated multimodality in two independent data sets. Applying Bayesian statistics provided a data-based classification of the World’s countries’ income distributions. The UGini index can be re-transferred into the classical index to preserve comparability with previous research.
- Disagreement between two common biomarkers of global DNA methylation (2016)
- Background: The quantification of global DNA methylation has been established in epigenetic screening. As more practicable alternatives to the HPLC-based gold standard, the methylation analysis of CpG islands in repeatable elements (LINE-1) and the luminometric methylation assay (LUMA) of overall 5-methylcytosine content in “CCGG” recognition sites are most widely used. Both methods are applied as virtually equivalent, despite the hints that their results only partly agree. This triggered the present agreement assessments. Results: Three different human cell types (cultured MCF7 and SHSY5Y cell lines treated with different chemical modulators of DNA methylation and whole blood drawn from pain patients and healthy volunteers) were submitted to the global DNA methylation assays employing LINE-1 or LUMA-based pyrosequencing measurements. The agreement between the two bioassays was assessed using generally accepted approaches to the statistics for laboratory method comparison studies. Although global DNA methylation levels measured by the two methods correlated, five different lines of statistical evidence consistently rejected the assumption of complete agreement. Specifically, a bias was observed between the two methods. In addition, both the magnitude and direction of bias were tissue-dependent. Interassay differences could be grouped based on Bayesian statistics, and these groups allowed in turn to re-identify the originating tissue. Conclusions: Although providing partly correlated measurements of DNA methylation, interchangeability of the quantitative results obtained with LINE-1 and LUMA was jeopardized by a consistent bias between the results. Moreover, the present analyses strongly indicate a tissue specificity of the differences between the two methods.