- Molecular dynamics simulations and docking of non-nucleoside reverse transcriptase inhibitors (NNRTIs): a possible approach to personalized HIV treatment : from 7th German Conference on Chemoinformatics: 25 CIC-Workshop Goslar, Germany, 6 - 8 November 2011 (2012)
- The human immunodeficiency virus (HIV) is currently ranked sixth in the worldwide causes of death [1]. One treatment approach is to inhibit reverse transcriptase (RT), an enzyme essential for reverse transcription of viral RNA into DNA before integration into the host genome [2]. By using non-nucleoside RT inhibitors (NNRTIs) [3], which target an allosteric binding site, major side effects can be evaded. Unfortunately, high genetic variability of HIV in combination with selection pressure introduced by drug treatment enables the virus to develop resistance against this drug class by developing point mutations. This situation necessitates treatment with alternative NNRTIs that target the particular RT mutants encountered in a patient. Previously, proteochemometric approaches have demonstrated some success in predicting binding of particular NNRTIs to individual mutants; however a structurebased approach may help to further improve the predictive success of such models. Hence, our aim is to rationalize the experimental activity of known NNRTIs against a variety of RT mutants by combining molecular modeling, long-timescale atomistic molecular dynamics (MD) simulation sampling and ensemble docking. Initial control experiments on known inhibitor-RT mutant complexes using this protocol were successful, and the predictivity for further complexes is currently being evaluated. In addition to predictive power, MD simulations of multiple RT mutants are providing fundamental insight into the dynamics of the allosteric NNRTI binding site which is useful for the design of future inhibitors. Overall, work of this type is hoped to contribute to the development of predictive efficacy models for individual patients, and hence towards personalized HIV treatment options.
- Merkmalsextraktion mitochondrialer Targetingsequenzen in Plasmodium falciparum (2002)
- Der Malaria verursachende Organismus Plasmodium falciparum (P. falciparum) besitzt in seinem Kerngenom für die Mitochondrien bestimmte Proteine, die als Transportsignal ein mitochondriales Transitpeptid enthalten. Durch die kürzlich erfolgte Sequenzierung des Genoms von P. falciparum ist es wünschenswert, Vohersagealgorithmen für verschiedene Proteinlokalisationen zur Verfügung zu haben. Für andere Organismen etablierte Programme zur Vorhersage von mitochondrialen Transitpeptiden, MitoProtII und TargetP, lieferten bei Anwendung auf Sequenzen aus P. falciparum nur unbefriedigende Ergebnisse. MitoProtII erzielte in einer 20-fachen Kreuzvalidierung einen Mathews-Koeffizienten von cc = 0,49, TargetP erzielte in diesem Fall einen Mathews-Koeffizienten von cc = 0,60. TargetP erzielte für die Sequenzen aus P. falciparum nur eine Selektivität von 47%, MitoProtII nur eine Sensitivität von 35%. Dieser Ergebnisse haben die Entwicklung eines speziell auf P. falciparum trainierten Vorhersagemodells wünschenswert gemacht. Kerncodierte mitochondriale Precursorproteine aus P. falciparum wurden mit statistischen Methoden, Hauptkomponentenanalyse, selbstorganisierenden Karten und überwachten neuronalen Netzen analysiert und mit solchen aus anderen Organismen verglichen. Zwei Repräsentationen der Datensätze wurden gewählt, Aminosäurehäufigkeiten und 19 physikochemische Eigenschaften. Ein grundsätzlich unterschiedlicher Aminosäuregebrauch konnte festgestellt werden. Glycin, Alanin, Prolin und Arginin werden in P. falciparum mit weniger als 60% der Häufigkeit in der Swiss-Prot-Datenbank, Version 36, verwendet. Isoleucin, Tyrosin, Asparagin und Lysin werden hingegen mit mehr als 150% der Häufigkeit in der Referenzdatenbank verwendet. Diese Häufigkeitsmuster wurden, mit Variationen, auch in allen Targetingsequenzen beobachtet. In der Datenanalyse mittels Hauptkomponentenanalyse und selbstorganisierenden Karten ließen sich cytoplasmatische Proteine in beiden Repräsentationen klar von der Gruppe mitochondrialer, extrazellulärer und apicoplastischer Proteine trennen. Die Trennung innerhalb der zweiten Gruppe war weniger deutlich. Ein neuronales Netz (PlasMit) zur Vorhersage mitochondrialer Transitpeptide in P. falciparum wurde entwickelt. Basierend auf der relativen Aminosäurehäufigkeitsverteilung innerhalb der ersten 24 N-terminalen Aminosäuren lieferte es einen Mathews- Korrelationskoeffizienten von 0,74 (86% korrekt vorhergesagte Sequenzen) in einer 20fachen Kreuzvalidierung. Dieses Netz sagte 2449 (24%) der 10276 vorhergesagten Open Reading Frames aus dem Genom von P. falciparum als mögliche mitochondrial lokalisierte Proteine voraus. Ein Netz mit identischer Topologie wurde auf eine geringere Anzahl falsch-positiver Vorhersagen trainiert und erzielte einen Mathews-Koeffizienten von 0,51 (84% korrekte Vorhersagen) in einer 10fachen Kreuzvalidierung. Dieses Netz sagte 903 (8,8%) potentielle mitochondriale Precursorproteine unter den 10276 vorhergesagten Open Reading Frames voraus. Sämtliche Trainingsdatensätze, die Open Reading Frames des Genoms von P. falciparum, sowie das Netz, das den höchsten Mathews-Koeffizienten erzielt hat, sind per Web unter http://www.modlab.de, Menüpunkt PlasMit, erreichbar.
- MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy (2014)
- Recently, mutations in the mitochondrial translation optimization factor 1 gene (MTO1) were identified as causative in children with hypertrophic cardiomyopathy, lactic acidosis and respiratory chain defect. Here, we describe an MTO1-deficient mouse model generated by gene trap mutagenesis that mirrors the human phenotype remarkably well. As in patients, the most prominent signs and symptoms were cardiovascular and included bradycardia and cardiomyopathy. In addition, the mutant mice showed a marked worsening of arrhythmias during induction and reversal of anaesthesia. The detailed morphological and biochemical workup of murine hearts indicated that the myocardial damage was due to complex I deficiency and mitochondrial dysfunction. In contrast, neurological examination was largely normal in Mto1-deficient mice. A translational consequence of this mouse model may be to caution against anaesthesia-related cardiac arrhythmias which may be fatal in patients.