Refine
Keywords
- ADHD (2)
- 14-3-3 gene family (1)
- 16p11.2 (1)
- Autism (1)
- Autismus-Spektrum-Störungen (1)
- CNV (1)
- CRISPR/Cas9 (1)
- CRP (1)
- D-dimer (1)
- Epigenetik (1)
Institute
- Loss of the Chr16p11.2 ASD candidate gene QPRT leads to aberrant neuronal differentiation in the SH-SY5Y neuronal cell model (2018)
- Background: Altered neuronal development is discussed as the underlying pathogenic mechanism of autism spectrum disorders (ASD). Copy number variations of 16p11.2 have recurrently been identified in individuals with ASD. Of the 29 genes within this region, quinolinate phosphoribosyltransferase (QPRT) showed the strongest regulation during neuronal differentiation of SH-SY5Y neuroblastoma cells. We hypothesized a causal relation between this tryptophan metabolism-related enzyme and neuronal differentiation. We thus analyzed the effect of QPRT on the differentiation of SH-SY5Y and specifically focused on neuronal morphology, metabolites of the tryptophan pathway, and the neurodevelopmental transcriptome. Methods: The gene dosage-dependent change of QPRT expression following Chr16p11.2 deletion was investigated in a lymphoblastoid cell line (LCL) of a deletion carrier and compared to his non-carrier parents. Expression of QPRT was tested for correlation with neuromorphology in SH-SY5Y cells. QPRT function was inhibited in SH-SY5Y neuroblastoma cells using (i) siRNA knockdown (KD), (ii) chemical mimicking of loss of QPRT, and (iii) complete CRISPR/Cas9-mediated knock out (KO). QPRT-KD cells underwent morphological analysis. Chemically inhibited and QPRT-KO cells were characterized using viability assays. Additionally, QPRT-KO cells underwent metabolite and whole transcriptome analyses. Genes differentially expressed upon KO of QPRT were tested for enrichment in biological processes and co-regulated gene-networks of the human brain. Results: QPRT expression was reduced in the LCL of the deletion carrier and significantly correlated with the neuritic complexity of SH-SY5Y. The reduction of QPRT altered neuronal morphology of differentiated SH-SY5Y cells. Chemical inhibition as well as complete KO of the gene were lethal upon induction of neuronal differentiation, but not proliferation. The QPRT-associated tryptophan pathway was not affected by KO. At the transcriptome level, genes linked to neurodevelopmental processes and synaptic structures were affected. Differentially regulated genes were enriched for ASD candidates, and co-regulated gene networks were implicated in the development of the dorsolateral prefrontal cortex, the hippocampus, and the amygdala. Conclusions: In this study, QPRT was causally related to in vitro neuronal differentiation of SH-SY5Y cells and affected the regulation of genes and gene networks previously implicated in ASD. Thus, our data suggest that QPRT may play an important role in the pathogenesis of ASD in Chr16p11.2 deletion carriers.
- Convergence of genes and cellular pathways dysregulated in autism spectrum disorders (2014)
- Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.
- Energy metabolism disturbances in cell models of PARK2 CNV carriers with ADHD (2020)
- The main goal of the present study was the identification of cellular phenotypes in attention-deficit-/hyperactivity disorder (ADHD) patient-derived cellular models from carriers of rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD. Human-derived fibroblasts (HDF) were cultured and human-induced pluripotent stem cells (hiPSC) were reprogrammed and differentiated into dopaminergic neuronal cells (mDANs). A series of assays in baseline condition and in different stress paradigms (nutrient deprivation, carbonyl cyanide m-chlorophenyl hydrazine (CCCP)) focusing on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, reactive oxygen species (ROS) abundance) were performed and changes in mitochondrial network morphology evaluated. We found changes in PARK2 CNV deletion and duplication carriers with ADHD in PARK2 gene and protein expression, ATP production and basal oxygen consumption rates compared to healthy and ADHD wildtype control cell lines, partly differing between HDF and mDANs and to some extent enhanced in stress paradigms. The generation of ROS was not influenced by the genotype. Our preliminary work suggests an energy impairment in HDF and mDAN cells of PARK2 CNV deletion and duplication carriers with ADHD. The energy impairment could be associated with the role of PARK2 dysregulation in mitochondrial dynamics.
- Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of Autism spectrum disorders (2012)
- Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23-4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.
- A point mutation in the Ncr1 signal peptide impairs the development of innate lymphoid cell subsets (2018)
- NKp46 (CD335) is a surface receptor shared by both human and mouse natural killer (NK) cells and innate lymphoid cells (ILCs) that transduces activating signals necessary to eliminate virus-infected cells and tumors. Here, we describe a spontaneous point mutation of cysteine to arginine (C14R) in the signal peptide of the NKp46 protein in congenic Ly5.1 mice and the newly generated NCRB6C14R strain. Ly5.1C14R NK cells expressed similar levels of Ncr1 mRNA as C57BL/6, but showed impaired surface NKp46 and reduced ability to control melanoma tumors in vivo. Expression of the mutant NKp46C14R in 293T cells showed that NKp46 protein trafficking to the cell surface was compromised. Although Ly5.1C14R mice had normal number of NK cells, they showed an increased number of early maturation stage NK cells. CD49a+ILC1s were also increased but these cells lacked the expression of TRAIL. ILC3s that expressed NKp46 were not detectable and were not apparent when examined by T-bet expression. Thus, the C14R mutation reveals that NKp46 is important for NK cell and ILC differentiation, maturation and function.
- Knockdown of the ADHD candidate gene Diras2 in murine hippocampal primary cells (2019)
- Objective: The DIRAS2 gene is associated with ADHD, but its function is largely unknown. Thus, we aimed to explore the genes and molecular pathways affected by DIRAS2. Method: Using short hairpin RNAs, we downregulated Diras2 in murine hippocampal primary cells. Gene expression was analyzed by microarray and affected pathways were identified. We used quantitative real-time polymerase chain reaction (qPCR) to confirm expression changes and analyzed enrichment of differentially expressed genes in an ADHD GWAS (genome-wide association studies) sample. Results: Diras2 knockdown altered expression of 1,612 genes, which were enriched for biological processes involved in neurodevelopment. Expression changes were confirmed for 33 out of 88 selected genes. These 33 genes showed significant enrichment in ADHD patients in a gene-set-based analysis. Conclusion: Our findings show that Diras2 affects numerous genes and thus molecular pathways that are relevant for neurodevelopmental processes. These findings may further support the hypothesis that DIRAS2 is linked to etiological processes underlying ADHD. (J. of Att. Dis. 2021; 25(4) 572-583).
- The MiR-320 family is strongly downregulated in patients with COVID-19 induced severe respiratory failure (2021)
- A high incidence of thromboembolic events associated with high mortality has been reported in severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections with respiratory failure. The present study characterized post-transcriptional gene regulation by global microRNA (miRNA) expression in relation to activated coagulation and inflammation in 21 critically ill SARS-CoV-2 patients. The cohort consisted of patients with moderate respiratory failure (n = 11) and severe respiratory failure (n = 10) at an acute stage (day 0–3) and in the later course of the disease (>7 days). All patients needed supplemental oxygen and severe patients were defined by the requirement of positive pressure ventilation (intubation). Levels of D-dimers, activated partial thromboplastin time (aPTT), C-reactive protein (CRP), and interleukin (IL)-6 were significantly higher in patients with severe compared with moderate respiratory failure. Concurrently, next generation sequencing (NGS) analysis demonstrated increased dysregulation of miRNA expression with progression of disease severity connected to extreme downregulation of miR-320a, miR-320b and miR-320c. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed involvement in the Hippo signaling pathway, the transforming growth factor (TGF)-β signaling pathway and in the regulation of adherens junctions. The expression of all miR-320 family members was significantly correlated with CRP, IL-6, and D-dimer levels. In conclusion, our analysis underlines the importance of thromboembolic processes in patients with respiratory failure and emphasizes miRNA-320s as potential biomarkers for severe progressive SARS-CoV-2 infection.
- Protein signatures of oxidative stress response in a patient specific cell line model for autism (2014)
- Background: Known genetic variants can account for 10% to 20% of all cases with autism spectrum disorders (ASD). Overlapping cellular pathomechanisms common to neurons of the central nervous system (CNS) and in tissues of peripheral organs, such as immune dysregulation, oxidative stress and dysfunctions in mitochondrial and protein synthesis metabolism, were suggested to support the wide spectrum of ASD on unifying disease phenotype. Here, we studied in patient-derived lymphoblastoid cell lines (LCLs) how an ASD-specific mutation in ribosomal protein RPL10 (RPL10[H213Q]) generates a distinct protein signature. We compared the RPL10[H213Q] expression pattern to expression patterns derived from unrelated ASD patients without RPL10[H213Q] mutation. In addition, a yeast rpl10 deficiency model served in a proof-of-principle study to test for alterations in protein patterns in response to oxidative stress. Methods: Protein extracts of LCLs from patients, relatives and controls, as well as diploid yeast cells hemizygous for rpl10, were subjected to two-dimensional gel electrophoresis and differentially regulated spots were identified by mass spectrometry. Subsequently, Gene Ontology database (GO)-term enrichment and network analysis was performed to map the identified proteins into cellular pathways. Results: The protein signature generated by RPL10[H213Q] is a functionally related subset of the ASD-specific protein signature, sharing redox-sensitive elements in energy-, protein- and redox-metabolism. In yeast, rpl10 deficiency generates a specific protein signature, harboring components of pathways identified in both the RPL10[H213Q] subjects' and the ASD patients' set. Importantly, the rpl10 deficiency signature is a subset of the signature resulting from response of wild-type yeast to oxidative stress. Conclusions: Redox-sensitive protein signatures mapping into cellular pathways with pathophysiology in ASD have been identified in both LCLs carrying the ASD-specific mutation RPL10[H213Q] and LCLs from ASD patients without this mutation. At pathway levels, this redox-sensitive protein signature has also been identified in a yeast rpl10 deficiency and an oxidative stress model. These observations point to a common molecular pathomechanism in ASD, characterized in our study by dysregulation of redox balance. Importantly, this can be triggered by the known ASD-RPL10[H213Q] mutation or by yet unknown mutations of the ASD cohort that act upstream of RPL10 in differential expression of redox-sensitive proteins.
- Risk stratification for bipolar disorder using polygenic risk scores among young high-risk adults (2020)
- Objective: Identifying high-risk groups with an increased genetic liability for bipolar disorder (BD) will provide insights into the etiology of BD and contribute to early detection of BD. We used the BD polygenic risk score (PRS) derived from BD genome-wide association studies (GWAS) to explore how such genetic risk manifests in young, high-risk adults. We postulated that BD-PRS would be associated with risk factors for BD. Methods: A final sample of 185 young, high-risk German adults (aged 18–35 years) were grouped into three risk groups and compared to a healthy control group (n = 1,100). The risk groups comprised 117 cases with attention deficit hyperactivity disorder (ADHD), 45 with major depressive disorder (MDD), and 23 help-seeking adults with early recognition symptoms [ER: positive family history for BD, (sub)threshold affective symptomatology and/or mood swings, sleeping disorder]. BD-PRS was computed for each participant. Logistic regression models (controlling for sex, age, and the first five ancestry principal components) were used to assess associations of BD-PRS and the high-risk phenotypes. Results: We observed an association between BD-PRS and combined risk group status (OR = 1.48, p < 0.001), ADHD diagnosis (OR = 1.32, p = 0.009), MDD diagnosis (OR = 1.96, p < 0.001), and ER group status (OR = 1.7, p = 0.025; not significant after correction for multiple testing) compared to healthy controls. Conclusions: In the present study, increased genetic risk for BD was a significant predictor for MDD and ADHD status, but not for ER. These findings support an underlying shared risk for both MDD and BD as well as ADHD and BD. Improving our understanding of the underlying genetic architecture of these phenotypes may aid in early identification and risk stratification.
- Generation of human induced pluripotent stem cell lines (hiPSC) from one bipolar disorder patient carrier of a DGKH risk haplotype and one non-risk-variant-carrier bipolar disorder patient (2018)
- Fibroblasts were isolated from skin biopsies from two patients with bipolar I disorder. One patient was a 26 year old female carrying a risk haplotype in the DGKH (diacylglycerol kinase eta) gene and the other was a non-carrier 27 year old male. Patient fibroblasts were reprogrammed into human induced pluripotent stem cells (hiPSCs) by using a Sendai virus vector. DGKH-risk haplotype and non-risk haplotype hiPSCs showed expression of pluripotency markers and were able to differentiate into cells of the three germ layers. These cell models are useful to investigate the role of risk gene variants in bipolar disorder.