### Refine

#### Year of publication

- 2002 (3) (remove)

#### Keywords

- Heat kernel (1)
- Krein space (1)
- Laplace operator on graphs (1)
- Pontrjagin space (1)
- Quantum Zeno effect (1)
- Schwinger model (1)
- modular group (1)
- quantum field theory (1)
- von Neumann algebra (1)

- Zeno Dynamics of von Neumann Algebras (2002)
- The dynamical quantum Zeno effect is studied in the context of von Neumann algebras. It is shown that the Zeno dynamics coincides with the modular dynamics of a localized subalgebra. This relates the modular operator of that subalgebra to the modular operator of the original algebra by a variant of the Kato--Lie--Trotter product formula. PACS - Klassifikation: 03.65.Xp, 03.65.Db, 02.30.Tb . See the following papers: Schmidt, Andreas U.: "Zeno Dynamics in Quantum Statistical Mechanics" and "Mathematics of the Quantum Zeno Effect" :

- A note on heat kernel estimates on weighted graphs with two-sided bounds on the weights (2002)
- We reconsider estimates for the heat kernel on weighted graphs recently found by Metzger and Stollmann. In the case that the weights satisfy a positive lower bound as well as a finite upper bound, we obtain a specialized lower estimate and a proper generalization of a previous upper estimate. Reviews: Math. Rev. 1979406, Zbl. Math. 0934.46042

- Mathematical problems of gauge quantum field theory: A survey of the Schwinger model (2002)
- This extended write-up of a talk gives an introductory survey of mathematical problems of the quantization of gauge systems. Using the Schwinger model as an exactly tractable but nontrivial example which exhibits general features of gauge quantum field theory, I cover the following subjects: The axiomatics of quantum field theory, formulation of quantum field theory in terms of Wightman functions, reconstruction of the state space, the local formulation of gauge theories, indefiniteness of the Wightman functions in general and in the special case of the Schwinger model, the state space of the Schwinger model, special features of the model. New results are contained in the Mathematical Appendix, where I consider in an abstract setting the Pontrjagin space structure of a special class of indefinite inner product spaces - the so called quasi-positive ones. This is motivated by the indefinite inner product space structure appearing in the above context and generalizes results of Morchio and Strocchi [J. Math. Phys. 31 (1990) 1467], and Dubin and Tarski [J. Math. Phys. 7 (1966) 574]. See the corresponding paper: Schmidt, Andreas U.: "Infinite Infrared Regularization and a State Space for the Heisenberg Algebra" and the presentation "Infinite Infrared Regularization in Krein Spaces".