Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Keywords
- 5-Lipoxygenase (1)
- 5-lipoxygenase (1)
- AF4 (1)
- Dicer (1)
- Drug safety (1)
- HDAC (1)
- Leukotriene (1)
- MLL (1)
- Metabolic syndrome (1)
- PPARγ (1)
Institute
- Investigations on the pleiotropic effects of 5-lipoxygenase inhibitors and cysteinyl leukotriene receptor-1 antagonists (2011)
- 5-lipoxygenase (5-LO) catalyzes the first two steps in leukotriene (LT) biosynthesis. In a two step reaction the enzyme oxygenates arachidonic acid (AA) to form the highly unstable epoxide leukotriene A4 (LTA4) in dehydrating a hydroperoxide intermediate (20). LTA4 can then be further metabolized by two terminal synthases yielding either the potent chemoattractant leukotriene B4 (LTB4) or the cysteinyl leukotrienes (CysLTs). 5-LO enzyme expression is primarily found in mature leukocytes (22) where it can either reside in the cytoplasm or in the nucleus associated with euchromatin (29). Its enzymatic activity is embedded in a complicated network in intact cells regulating LT synthesis by various factors dependent on the cell type and nature of stimulus. Factors such as the amount of free AA released by phospholipase A2 enzymes, levels of enzymes involved, catalytic activity per enzyme molecule and availability of different small molecules influence 5-LO activity (36). The 5-LO derived LTs are lipid mediators which were shown to primarily mediate inflammatory and allergic reactions and their role in the pathogenesis of asthma is well defined. CysLTs are among the most potent bronchoconstrictors yet studied in man and play an important role in airway remodeling. LTB4 has no bronchoconstrictory effects in healthy and asthmatic humans but displays potent chemoattractant properties on neutrophils and increases leukocyte adhesion to the vessel wall endothelium (22). Therefore, LTB4 enhances the capacity of macrophages and neutrophils to ingest and kill microbes. In concert with LTB4, histamine and prostaglandin E2 (PGE2) CysLTs are thought to maintain the tone of the human airways (82). Besides their well studied role in asthma, 5-LO derived LTs have also been implicated to play a role in cardiovascular diseases and cancer. In contrast to healthy tissues, LT pathway enzymes and receptors were found to be abundantly expressed in cancer tissues, atherosclerotic lesions in the aorta, heart and carotid artery (86). Pharmacological inhibition of 5-LO potently suppressed tumour cell growth by inducing cell cycle arrest and triggering cell death via the intrinsic apoptotic pathway (92, 93). In several studies LTs were found to exhibit cardiovascular actions by promotion of plasma leakage in postcapillary venules, coronary artery vasoconstriction and impaired ventricular contraction leading to reduced coronary blood flow and cardiac output (24). Unfortunately, the precise molecular mechanisms through which LTs influence carcinogenesis and cardiovascular diseases are still incompletely understood. In contrast, an increasing number of studies questions the correlation between 5-LO and cancer (95-97) since extreme LT concentrations were applied to induce proliferative effects in the majority of the publications. A few studies exist which show susceptibility towards 5-LO products in physiological concentrations or achieve anti-proliferation by applying low concentrations of 5-LO inhibitors (98) ...
- Urate transporter inhibitor lesinurad is a selective peroxisome proliferator-activated receptor gamma modulator (sPPARγM) in vitro (2018)
- Gout is the most common arthritic disease in human but was long neglected and therapeutic options are not satisfying. However, with the recent approval of the urate transporter inhibitor lesinurad, gout treatment has experienced a major innovation. Here we show that lesinurad possesses considerable modulatory potency on peroxisome proliferator-activated receptor γ (PPARγ). Since gout has a strong association with metabolic diseases such as type 2 diabetes, this side-activity appears as very valuable contributing factor to the clinical efficacy profile of lesinurad. Importantly, despite robustly activating PPARγ in vitro, lesinurad lacked adipogenic activity, which seems due to differential coactivator recruitment and is characterized as selective PPARγ modulator (sPPARγM).
- AF4 and AF4-MLL mediate transcriptional elongation of 5-lipoxygenase mRNA by 1, 25-dihydroxyvitamin D3 (2015)
- The human 5-lipoxygenase (5-LO), encoded by the ALOX5 gene, is the key enzyme in the formation of pro-inflammatory leukotrienes. ALOX5 gene transcription is strongly stimulated by calcitriol (1α, 25-dihydroxyvitamin D3) and TGFβ (transforming growth factor-β). Here, we investigated the influence of MLL (activator of transcript initiation), AF4 (activator of transcriptional elongation) as well as of the leukemogenic fusion proteins MLL-AF4 (ectopic activator of transcript initiation) and AF4-MLL (ectopic activator of transcriptional elongation) on calcitriol/TGFβ-dependent 5-LO transcript elongation. We present evidence that the AF4 complex directly interacts with the vitamin D receptor (VDR) and promotes calcitriol-dependent ALOX5 transcript elongation. Activation of transcript elongation was strongly enhanced by the AF4-MLL fusion protein but was sensitive to Flavopiridol. By contrast, MLL-AF4 displayed no effect on transcriptional elongation. Furthermore, HDAC class I inhibitors inhibited the ectopic effects caused by AF4-MLL on transcriptional elongation, suggesting that HDAC class I inhibitors are potential therapeutics for the treatment of t(4;11)(q21;q23) leukemia.
- Beyond leukotriene formation—the noncanonical functions of 5-lipoxygenase (2019)
- 5-lipoxygenase (5-LO) is the key enzyme in the biosynthesis of leukotrienes and specialized proresolving lipid mediators (SPM). It is mainly expressed in leukocytes and is part of the innate immune system. 5-LO can shuttle between the cytosol and the nucleus. Upon cell activation the protein translocates from soluble cellular compartments to the nuclear membrane. Besides FLAP which is required for cellular leukotriene and SPM formation, 5-LO interacts with other proteins like coactosin-like protein (CLP), Dicer, β-catenin and p53. In this review, the factors involved in the regulation of 5-LO expression, the role of 5-LO in the regulation of stem cell proliferation and differentiation and its biological functions apart from leukotriene and SPM formation are summarized.
- Zafirlukast is a dual modulator of human soluble epoxide hydrolase and peroxisome proliferator-activated receptor γ (2019)
- Cysteinyl leukotriene receptor 1 antagonists (CysLT1RA) are frequently used as add-on medication for the treatment of asthma. Recently, these compounds have shown protective effects in cardiovascular diseases. This prompted us to investigate their influence on soluble epoxide hydrolase (sEH) and peroxisome proliferator activated receptor (PPAR) activities, two targets known to play an important role in CVD and the metabolic syndrome. Montelukast, pranlukast and zafirlukast inhibited human sEH with IC50 values of 1.9, 14.1, and 0.8 μM, respectively. In contrast, only montelukast and zafirlukast activated PPARγ in the reporter gene assay with EC50 values of 1.17 μM (21.9% max. activation) and 2.49 μM (148% max. activation), respectively. PPARα and δ were not affected by any of the compounds. The activation of PPARγ was further investigated in 3T3-L1 adipocytes. Analysis of lipid accumulation, mRNA and protein expression of target genes as well as PPARγ phosphorylation revealed that montelukast was not able to induce adipocyte differentiation. In contrast, zafirlukast triggered moderate lipid accumulation compared to rosiglitazone and upregulated PPARγ target genes. In addition, we found that montelukast and zafirlukast display antagonistic activities concerning recruitment of the PPARγ cofactor CBP upon ligand binding suggesting that both compounds act as PPARγ modulators. In addition, zafirlukast impaired the TNFα triggered phosphorylation of PPARγ2 on serine 273. Thus, zafirlukast is a novel dual sEH/PPARγ modulator representing an excellent starting point for the further development of this compound class.