Refine
Keywords
- crystal structure (15)
- hydrogen bonding (8)
- TATD (3)
- benzoxazines (3)
- co-crystalline adducts (3)
- phenolic resins (3)
- Schiff bases (2)
- short contacts (2)
- C—H...π interactions (1)
- (2-hydroxynaphthalen-1-yl)methyl (1)
- Crystal structure of 1-[(2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazin-2-yl)methyl]naphthalen-2-ol : a possible candidate for new polynaphthoxazine materials (2015)
- In the title compound, C23H19NO2, an oxazine Mannich base derivative, the oxazine ring has a half-chair conformation. The 2-hydroxynaphthalen-1-yl substituent is placed in an axial position. There is an intramolecular O-H...N hydrogen bond, forming an S(6) graph-set motif. In the crystal, molecules are connected by a pair of C-H...[pi] interactions into an inversion dimer, which is reinforced by another pair of weak C-H...[pi] interactions. The dimers are linked by a [pi]-[pi] interaction [centroid-centroid distance = 3.6268 (17) Å], consolidating a column along the a axis. Furthermore, the columns interact with each other by a weak C-H...[pi] interaction, generating a three-dimensional network.
- 2-[(1H-Benzimidazol-1-yl)methyl]phenol benzene hemisolvate (2014)
- In the title solvate, C14H12N2O·0.5C6H6, the complete benzene molecule is generated by a crystallographic inversion centre. The dihedral angle between the planes of the benzimidazole moiety and the phenol substituent is 75.28 (3)°. In the crystal, O—H⋯N hydrogen bonds link the molecules into parallel chains propagating along [100]. The molecules are further connected by C—H⋯π interactions.
- Crystal structure of 1,1'-[imidazolidine-1,3-diylbis(methylene)]bis(naphthalen-2-ol) (2015)
- The crystal structure of the title compound, C25H24N2O2, at 173 K has monoclinic (C2/c) symmetry. The molecule is located on a crystallographic twofold rotation axis with only half a molecule in the asymmetric unit. The imidazolidine ring adopts a twist conformation, with a twist about the ring C—C bond. The crystal structure shows the anticlinal disposition of the two (2-hydroxynaphthalen-1-yl)methyl substituents of the imidazolidine ring. The structure displays two intramolecular O—H⋯N hydrogen bonds, each forming an S(6) ring motif.
- Crystal structure of the co-crystalline adduct 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD)–4-bromophenol (1/2) (2015)
- The structure of the 1:2 co-crystalline adduct C8H16N4·2C6H5BrO, (I), from the solid-state reaction of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) and 4-bromophenol, has been determined. The asymmetric unit of the title co-crystalline adduct comprises a half molecule of aminal cage polyamine plus a 4-bromophenol molecule. A twofold rotation axis generates the other half of the adduct. The primary inter-species association in the title compound is through two intermolecular O—H⋯N hydrogen bonds. In the crystal, the adducts are linked by weak non-conventional C—H⋯O and C—H⋯Br hydrogen bonds, giving a two-dimensional supramolecular structure parallel to the bc plane.
- Crystal structure of the 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU)–4-nitrophenol (1/2) adduct : the role of anomeric effect in the formation of a second hydrogen-bond interaction (2015)
- In the title ternary co-crystalline adduct, C7H14N4·2C6H5NO3, molecules are linked by two intermolecular O—H⋯N hydrogen bonds, forming a tricomponent aggregates in the asymmetric unit. The hydrogen-bond formation to one of the N atoms is enough to induce structural stereoelectronic effects in the normal donor→acceptor direction. In the title adduct, the two independent nitrophenol molecules are essentially planar, with maximum deviations of 0.0157 (13) and 0.0039 (13) Å. The dihedral angles between the planes of the nitro group and the attached benzene rings are 4.04 (17) and 5.79 (17)°. In the crystal, aggregates are connected by C—H⋯O hydrogen bonds, forming a supramolecular dimer enclosing an R66(32) ring motif. Additional C—H⋯O intermolecular hydrogen-bonding interactions form a second supramolecular inversion dimer with an R22(10) motif. These units are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network.
- Redetermination of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (2014)
- The structure of the title compound, C8H16N4, which consists of four fused seven-membered rings, has been redetermined at 173 K. This redetermination corrects the orientation of two H atoms, which were located at unrealistic positions in the original room-temperature study [Murray-Rust (1974[Murray-Rust, P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1136-1141.]). J. Chem. Soc. Perkin Trans. 2, pp. 1136–1141]. The complete molecule is generated by -42m symmetry, with one quarter of a molecule [one N atom (site symmetry m), two C atoms (one with site symmetry m and the other with site symmetry 2) and two H atoms] in the asymmetric unit. No directional interactions beyond van der Waals contacts are apparent in the crystal structure.
- 6,6'-Dimethyl-2,2'-[imidazolidine-1,3-diylbis(methylene)]diphenol (2014)
- In the title compound, C19H24N2O2, a di-Mannich base derived from 2-methylphenol and 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane, the imidazolidine ring adopts a twist conformation, with a twist about the ring N—C bond [C—N—C—C torsion angle = −44.34 (14)°]. The two 2-hydroxy-3-methylbenzyl groups are located in trans positions with respect to the imidazolidine fragment. The structure displays two intramolecular O—H⋯N hydrogen bonds, which each form an S(6) ring motif. In the crystal, the molecules are linked by weak C—H⋯O interactions with a bifurcated acceptor, forming a three-dimensional network.
- Mechanochemical synthesis and crystal structure of a 1:2 co-crystal of 1,3,6,8-tetraazatricyclo-[4.3.1.13,8]undecane (TATU) and 4-chloro-3,5-dimethylphenol (2016)
- Solvent-free treatment of 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecano (TATU) with 4-chloro-3,5-dimethylphenol led to the formation of the title co-crystal, C7H14N4·2C8H9ClO. The asymmetric unit contains one aminal cage molecule and two phenol molecules linked via two O-H...N hydrogen bonds. In the aminal cage, the N-CH2-CH2-N unit is slightly distorted from a syn periplanar geometry. Aromatic [pi]-[pi] stacking between the benzene rings from two different neighbouring phenol molecules [centroid-centroid distance = 4.0570 (11) Å] consolidates the crystal packing.
- Crystal structure of the 1:2 co-crystal of 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) and 4-chlorophenol (1/2) (2016)
- In the title compound, C7H14N4·2C6H5ClO, which crystallized with two crystallographically independent 4-chlorophenol molecules and one 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) molecule in the asymmetric unit, the independent components are linked by two O-H...N hydrogen bonds. The hydrogen-bond acceptor sites are two non-equivalent N atoms from the aminal cage structure, and the tricyclic system distorts by changing the C-N bond lengths. In the crystal, these hydrogen-bonded aggregates are linked into chains along the c axis by C-H...N hydrogen bonds. The crystal structure also features C-H...[pi] contacts.
- Crystal structure of 1,2-bis(6-bromo-3,4-dihydro-2H-benz[e][1,3]oxazin-3-yl)ethane : a brominecontaining bis-benzoxazine (2016)
- The title benzoxazine molecule, C18H18Br2N2O2, was prepared by a Mannich-type reaction of 4-bromophenol with ethane-1,2-diamine and formaldehyde. The title compound crystallizes in the monoclinic space group C2/c with a centre of inversion located at the mid-point of the C-C bond of the central CH2CH2 spacer. The oxazinic ring adopts a half-chair conformation. The structure is compared to those of other functionalized benzoxazines synthesized in our laboratory. In the crystal, weak C-H...Br and C-H...O hydrogen bonds stack the molecules along the b-axis direction.