Refine
Keywords
- crystal structure (19) (remove)
- Crystal structure of the co-crystalline adduct 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD)–4-chloro-3,5-dimethylphenol (1/1) (2015)
- In the crystal of the title co-crystalline adduct, C8H16N4·C8H9ClO, (I), prepared by solid-state reaction, the molecules are linked by intermolecular O—H⋯N hydrogen bonds, forming a D motif. The azaadamantane structure in (I) is slightly distorted, with N—CH2—CH2—N torsion angles of 10.4 (3) and −9.0 (3)°. These values differ slightly from the corresponding torsion angles in the free aminal cage (0.0°) and in related co-crystalline adducts, which are not far from a planar geometry and consistent with a D2d molecular symmetry in the tetraazatricyclo structure. The structures also differ in that there is a slight elongation of the N—C bond lengths about the N atom that accepts the hydrogen bond in (I) compared with the other N—C bond lengths. In the crystal, the two molecules are not only linked by a classical O—H⋯N hydrogen bond but are further connected by weak C—H⋯π interactions, forming a two-dimensional supramolecular network parallel to the bc plane.
- Crystal structure of the 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU)–4-nitrophenol (1/2) adduct : the role of anomeric effect in the formation of a second hydrogen-bond interaction (2015)
- In the title ternary co-crystalline adduct, C7H14N4·2C6H5NO3, molecules are linked by two intermolecular O—H⋯N hydrogen bonds, forming a tricomponent aggregates in the asymmetric unit. The hydrogen-bond formation to one of the N atoms is enough to induce structural stereoelectronic effects in the normal donor→acceptor direction. In the title adduct, the two independent nitrophenol molecules are essentially planar, with maximum deviations of 0.0157 (13) and 0.0039 (13) Å. The dihedral angles between the planes of the nitro group and the attached benzene rings are 4.04 (17) and 5.79 (17)°. In the crystal, aggregates are connected by C—H⋯O hydrogen bonds, forming a supramolecular dimer enclosing an R66(32) ring motif. Additional C—H⋯O intermolecular hydrogen-bonding interactions form a second supramolecular inversion dimer with an R22(10) motif. These units are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network.
- Crystal structure of 2,2'-(ethane-1,2-diyl)bis(2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine) : a prospective raw material for polybenzoxazines (2017)
- In the title compound, C26H24N2O2, the oxazine moiety is fused to a naphthalene ring system. The asymmetric unit consists of one half of the molecule, which lies about an inversion centre. The C atoms of the ethylene spacer group adopt an antiperiplanar arrangement. The oxazine ring adopts a half-chair conformation. In the crystal, supramolecular chains running along the b axis are formed via short C—H⋯π contacts. The crystal studied was a non-merohedral twin with a fractional contribution of 0.168 (2) of the minor twin component.
- Crystal structure of the co-crystalline adduct 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD)–4-bromophenol (1/2) (2015)
- The structure of the 1:2 co-crystalline adduct C8H16N4·2C6H5BrO, (I), from the solid-state reaction of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) and 4-bromophenol, has been determined. The asymmetric unit of the title co-crystalline adduct comprises a half molecule of aminal cage polyamine plus a 4-bromophenol molecule. A twofold rotation axis generates the other half of the adduct. The primary inter-species association in the title compound is through two intermolecular O—H⋯N hydrogen bonds. In the crystal, the adducts are linked by weak non-conventional C—H⋯O and C—H⋯Br hydrogen bonds, giving a two-dimensional supramolecular structure parallel to the bc plane.
- Crystal structure of the co-crystalline adduct 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD)–4-iodophenol (1/2) : supramolecular assembly mediated by halogen and hydrogen bonding (2017)
- The asymmetric unit of the title co-crystalline adduct, 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD)–4-iodophenol (1/2), C8H16N4·2C6H5IO, comprises a half molecule of the aminal cage polyamine plus a 4-iodophenol molecule. A twofold rotation axis generates the other half of the adduct. The components are linked by two intermolecular O—H⋯N hydrogen bonds. The adducts are further linked into a three-dimensional framework structure by a combination of N⋯I halogen bonds and weak non-conventional C—H⋯O and C—H⋯I hydrogen bonds.
- Crystal structure of 1,3-bis[(E)-benzylideneamino]propan-2-ol (2017)
- In the title compound, C17H18N2O, the central carbon atom with the OH substituent and one of the (E)-benzylideneamino substituents are disordered over two sets of sites with occupancies of 0.851 (4) and 0.149 (4). The relative positions of the two disorder components is equivalent to a rotation of approximately 60° about the C—N single bond. In the crystal, the molecules are held together by O—H...N hydrogen bonds, forming simple C(5) chains along the b-axis direction. In addition, pairs of the chains are further aggregated by weak C—H...π interactions.
- C—IN short contacts as tools for the construction of the crystal packing in the crystal structure of 3,30-(ethane-1,2-diyl)bis(6-iodo-3,4-dihydro-2H-1,3-benzoxazine) (2017)
- The asymmetric unit of the title compound, C18H18I2N2O2, consists of one half-molecule, completed by the application of inversion symmetry. The molecule adopts the typical structure for this class of bis-benxozazines, characterized by an anti orientation of the two benzoxazine rings around the central C—C bond. The oxazinic ring adopts a half-chair conformation. In the crystal, molecules are linked by C—I⋯N short contacts [I⋯N = 3.378 (2) Å], generating layers lying parallel to the bc plane.
- Crystal structure of 1,3-bis(3-tert-butyl-2-hydroxy-5-methylbenzyl)-1,3-diazinan-5-ol monohydrate (2016)
- In the title hydrate, C28H42N2O3·H2O, the central 1,3-diazinan-5-ol ring adopts a chair conformation with the two benzyl substituents equatorial and the lone pairs of the N atoms axial. The dihedral angle between the aromatic rings is 19.68 (38)°. There are two intramolecular O-H...N hydrogen bonds, each generating an S(6) ring motif. In the crystal, classical O-H...O hydrogen bonds connect the 1,3-diazinane and water molecules into columns extending along the b axis. The crystal structure was refined as a two-component twin with a fractional contribution to the minor domain of 0.0922 (18).
- Crystal structure and C-H...F hydrogen bonding in the fluorinated bis-benzoxazine : 3,3'-(ethane-1,2-diyl)bis(6-fluoro-3,4-dihydro-2H-1,3-benzoxazine) (2016)
- The title fluorinated bisbenzoxazine, C18H18F2N2O2, crystallizes with one half-molecule in the asymmetric unit, which is completed by inversion symmetry. The fused oxazine ring adopts an approximately half-chair conformation. The two benzoxazine rings are oriented anti to one another around the central C-C bond. The dominant intermolecular interaction in the crystal structure is a C-H...F hydrogen bond between the F atoms and the axial H atoms of the OCH2N methylene group in the oxazine rings of neighbouring molecules. C-H...[pi] contacts further stabilize the crystal packing.
- Crystal structure of the 1:2 co-crystal of 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) and 4-chlorophenol (1/2) (2016)
- In the title compound, C7H14N4·2C6H5ClO, which crystallized with two crystallographically independent 4-chlorophenol molecules and one 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) molecule in the asymmetric unit, the independent components are linked by two O-H...N hydrogen bonds. The hydrogen-bond acceptor sites are two non-equivalent N atoms from the aminal cage structure, and the tricyclic system distorts by changing the C-N bond lengths. In the crystal, these hydrogen-bonded aggregates are linked into chains along the c axis by C-H...N hydrogen bonds. The crystal structure also features C-H...[pi] contacts.