### Refine

#### Document Type

- Conference Proceeding (3)
- Article (1)

#### Keywords

- BCS phase (1)
- isospin (1)
- lattice QCD (1)

- QCD thermodynamics with two flavours of Wilson fermions on large lattices (2012)
- We explore the phase diagram of two flavour QCD at vanishing chemical potential using dynamical O(a)-improved Wilson quarks. In the approach to the chiral limit we use lattices with a temporal extent of Nt = 16 and spatial extent L = 32;48 and 64 to enable the extrapolation to the thermodynamic limit with small discretisation effects. In addition to an update on the scans at constant k, reported earlier, we present first results from scans along lines of constant physics at a pion mass of 290 MeV.We probe the transition using the Polyakov loop and the chiral condensate, as well as spectroscopic observables such as screening masses.

- Towards the Nf = 2 deconfinement transition temperature with O(a) improved Wilson fermions (2010)
- A lot of effort in lattice simulations over the last years has been devoted to studies of the QCD deconfinement transition. Most state-of-the-art simulations use rooted staggered fermions, while Wilson fermions are affected by large systematic uncertainties, such as coarse lattices or heavy sea quarks. Here we report on an ongoing study of the transition, using two degenerate flavours of nonperturbatively O(a) improved Wilson fermions. We start with Nt = 12 and 16 lattices and pion masses of 600 to 450 MeV, aiming at chiral and continuum limits with light quarks.

- QCD at finite isospin chemical potential (2018)
- We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential and temperatures below the deconfinement transition the system changes into a phase where charged pions condense, accompanied by an accumulation of low modes of the Dirac operator. The simulations are enabled by the introduction of a pionic source into the action, acting as an infrared regulator for the theory, and physical results are obtained by removing the regulator via an extrapolation. We present an update of our study concerning the associated phase diagram using 2+1 flavours of staggered fermions with physical quark masses and the comparison to Taylor expansion. We also present first results for our determination of the equation of state at finite isospin chemical potential and give an example for a cosmological application. The results can also be used to gain information about QCD at small baryon chemical potentials using reweighting with respect to the pionic source parameter and the chemical potential and we present first steps in this direction.

- The Dirac spectrum and the BEC-BCS crossover in QCD at nonzero isospin asymmetry (2020)
- For large isospin asymmetries, perturbation theory predicts the quantum chromodynamic (QCD) ground state to be a superfluid phase of u and d¯ Cooper pairs. This phase, which is denoted as the Bardeen-Cooper-Schrieffer (BCS) phase, is expected to be smoothly connected to the standard phase with Bose-Einstein condensation (BEC) of charged pions at μI≥mπ/2 by an analytic crossover. A first hint for the existence of the BCS phase, which is likely characterised by the presence of both deconfinement and charged pion condensation, comes from the lattice observation that the deconfinement crossover smoothly penetrates into the BEC phase. To further scrutinize the existence of the BCS phase, in this article we investigate the complex spectrum of the massive Dirac operator in 2+1-flavor QCD at nonzero temperature and isospin chemical potential. The spectral density near the origin is related to the BCS gap via a generalization of the Banks-Casher relation to the case of complex Dirac eigenvalues (derived for the zero-temperature, high-density limits of QCD at nonzero isospin chemical potential).