### Refine

- Nuclear polarization in heavy atoms and superheavy quasiatoms (1991)
- We consider the contribution of nuclear polarization to the Lamb shift of K- and L-shell electrons in heavy atoms and quasiatoms. Our formal approach is based on the concept of effective photon propagators with nuclear-polarization insertions treating effects of nuclear polarization on the same footing as usual QED radiative corrections. We explicitly derive the modification of the photon propagator for various collective nuclear excitations and calculate the corresponding effective self-energy shift perturbatively. The energy shift of the 1s1/2 state in 92238U due to virtual excitation of nuclear rotational states is shown to be a considerable correction for atomic high-precision experiments. In contrast to this, nuclear-polarization effects are of minor importance for Lamb-shift studies in 82208Pb.

- Magnetic neutrino scattering by crystals (1990)
- The magnetic dipole scattering of neutrinos by the electrostatic potentials of single atoms as well as crystals is investigated. It is shown that scattering by a rigid cubic lattice can amplify the neutrino-atom cross section by a factor of N1/3, N being the number of scatterers. However, comparing the results with typical weak-interaction cross sections, the effect seems to be not observable in experiment.

- Nuclear polarization contribution to the Lamb shift in heavy atoms (1989)
- The energy shift of the 1s1/2 state in 92238U due to virtual excitation of nuclear rotational modes is shown to be a considerable correction for atomic high-precision experiments. In contrast to this, nuclear polarization effects are of minor importance for Lamb-shift studies in 82208Pb.

- Description of atomic excitations in heavy-ion reactions (1983)
- Excitations of the atomic shell in heavy-ion collisions are influenced by the presence of a nuclear reaction. In the present Rapid Communication we point out the equivalence between a semiclassical description based on the nuclear autocorrelation function with an earlier model which employs a distribution of reaction times f(T). For the example of U+U collisions, results of coupled-channel calculations for positron creation and K-hole excitations are discussed for two schematic reaction models.

- Self-energy of electrons in critical fields (1982)
- The energy shift of K electrons in heavy atoms due to the self-energy correction has been calculated. This process is treated to all orders in Zα, where Z denotes the nuclear charge. For the superheavy system Z=170, where the K-shell binding energy reaches the pair-production threshold (E1sb∼2mc2), a shift of +11.0 keV is found. This shift is almost cancelled by the vacuum polarization, leaving a negligible effect for all quantum-electrodynamical corrections of order α but all orders of Zα.

- Electron-translation effects in heavy-ion scattering (1981)
- The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for δ electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations.

- Stability of massive objects in a new scalar-tensor theory (1981)
- We define a new scalar-tensor theory with an effective gravitational coupling constant depending on a scalar field. The coupling is such that the gravitational interaction decreases with the strength of the scalar field. We show that this is not sufficient to prevent the gravitational collapse of sufficiently massive dense objects.

- Theory of positron production in heavy-ion collisions (1981)
- Collisions of very heavy ions at energies close to the Coulomb barrier are discussed as a unique tool to study the behavior of the electron-positron field in the presence of strong external electromagnetic fields. To calculate the excitation processes induced by the collision dynamics, a semiclassical model is employed and adapted to describe the field-theoretical many-particle system. An expansion in the adiabatic molecular basis is chosen. Energies and matrix elements are calculated using the monopole approximation. In a supercritical (Z1+Z2≳173) quasiatomic system the 1s level joins the antiparticle continuum and becomes a resonance, rendering the neutral vacuum state unstable. Several methods of treating the corresponding time-dependent problem are discussed. A projection-operator technique is introduced for a fully dynamical treatment of the resonance. Positron excitation rates in s1/2 and p1/2 states are obtained by numerical solution of the coupled-channel equations and are compared with results from first- plus second-order perturbation theory. Calculations are performed for subcritical and supercritical collisions of Pb-Pb, Pb-U, U-U, and U-Cf. Strong relativistic deformations of the wave functions and the growing contributions from inner-shell bound states lead to a very steep Z dependence of positron production. The results are compared with available data from experiments done at GSI. Correlations between electrons and positrons are briefly discussed.

- Phase transitions in nuclear matter (1980)
- Phase transitions in nuclear matter A method for the description of spin-isospin phase transitions in nuclear matter is developed. It allows a complete description of the pion condensation phase transition in the framework of the Landau-Migdal Fermi liquid theory. The equation of the order parameter is derived and the condensation energy is calculated. We study the influence of pion condensation on the nuclear equation of state and the temperature dependence of pion condensation. NUCLEAR STRUCTURE Description of pion-condensed ground state by Green's function technique.

- Dirac particles in Rindler space (1980)
- We show that a uniformly accelerated observer experiences a "thermal" flux of Dirac particles in the ordinary Minkowski vacuum.