### Refine

#### Year of publication

- 1998 (3) (remove)

#### Document Type

- Article (1)
- Part of a Book (1)
- Report (1)

- The principal independent components of images (1998)
- This paper proposes a new approach for the encoding of images by only a few important components. Classically, this is done by the Principal Component Analysis (PCA). Recently, the Independent Component Analysis (ICA) has found strong interest in the neural network community. Applied to images, we aim for the most important source patterns with the highest occurrence probability or highest information called principal independent components (PIC). For the example of a synthetic image composed by characters this idea selects the salient ones. For natural images it does not lead to an acceptable reproduction error since no a-priori probabilities can be computed. Combining the traditional principal component criteria of PCA with the independence property of ICA we obtain a better encoding. It turns out that this definition of PIC implements the classical demand of Shannon’s rate distortion theory.

- Image encoding by independent principal components (1998)
- The encoding of images by semantic entities is still an unresolved task. This paper proposes the encoding of images by only a few important components or image primitives. Classically, this can be done by the Principal Component Analysis (PCA). Recently, the Independent Component Analysis (ICA) has found strong interest in the signal processing and neural network community. Using this as pattern primitives we aim for source patterns with the highest occurrence probability or highest information. For the example of a synthetic image composed by characters this idea selects the salient ones. For natural images it does not lead to an acceptable reproduction error since no a-priori probabilities can be computed. Combining the traditional principal component criteria of PCA with the independence property of ICA we obtain a better encoding. It turns out that the Independent Principal Components (IPC) in contrast to the Principal Independent Components (PIC) implement the classical demand of Shannon’s rate distortion theory.

- The principal independent components of images (1998)
- Classically, encoding of images by only a few, important components is done by the Principal Component Analysis (PCA). Recently, a data analysis tool called Independent Component Analysis (ICA) for the separation of independent influences in signals has found strong interest in the neural network community. This approach has also been applied to images. Whereas the approach assumes continuous source channels mixed up to the same number of channels by a mixing matrix, we assume that images are composed by only a few image primitives. This means that for images we have less sources than pixels. Additionally, in order to reduce unimportant information, we aim only for the most important source patterns with the highest occurrence probabilities or biggest information called „Principal Independent Components (PIC)“. For the example of a synthetic picture composed by characters this idea gives us the most important ones. Nevertheless, for natural images where no a-priori probabilities can be computed this does not lead to an acceptable reproduction error. Combining the traditional principal component criteria of PCA with the independence property of ICA we obtain a better encoding. It turns out that this definition of PIC implements the classical demand of Shannon’s rate distortion theory.