Refine
Keywords
- Cold pain (1)
- DNA methylation (1)
- Data science (1)
- Heat pain (1)
- Human experimental pain models (1)
- Machine-learning (1)
- Neuronal networks (1)
- OPRM1 methylation (1)
- Pressure pain (1)
- Quantitative sensory testing (1)
- Consequences of a human TRPA1 genetic variant on the perception of nociceptive and olfactory stimuli (2014)
- Background: TRPA1 ion channels are involved in nociception and are also excited by pungent odorous substances. Based on reported associations of TRPA1 genetics with increased sensitivity to thermal pain stimuli, we therefore hypothesized that this association also exists for increased olfactory sensitivity. Methods: Olfactory function and nociception was compared between carriers (n = 38) and non-carriers (n = 43) of TRPA1 variant rs11988795 G.A, a variant known to enhance cold pain perception. Olfactory function was quantified by assessing the odor threshold, odor discrimination and odor identification, and by applying 200-ms pulses of H2S intranasal. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (blunt pressure, electrical stimuli, cold and heat stimuli, and 200-ms intranasal pulses of CO2). Results: Among the 11 subjects with moderate hyposmia, carriers of the minor A allele (n = 2) were underrepresented (34 carriers among the 70 normosmic subjects; p = 0.049). Moreover, carriers of the A allele discriminated odors significantly better than non-carriers (13.161.5 versus 12.361.6 correct discriminations) and indicated a higher intensity of the H2S stimuli (29.2613.2 versus 21612.8 mm VAS, p = 0.006), which, however, could not be excluded to have involved a trigeminal component during stimulation. Finally, the increased sensitivity to thermal pain could be reproduced. Conclusions: The findings are in line with a previous association of a human TRPA1 variant with nociceptive parameters and extend the association to the perception of odorants. However, this addresses mainly those stimulants that involve a trigeminal component whereas a pure olfactory effect may remain disputable. Nevertheless, findings suggest that future TRPA1 modulating drugs may modify the perception of odorants.
- Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B-induced local skin hypersensitization in healthy subjects : a machine-learned analysis (2017)
- The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models.
- Pharmacoepigenetics of the role of DNA methylation in μ-opioid receptor expression in different human brain regions (2016)
- Aim: Exposure to opioids has been associated with epigenetic effects. Studies in rodents suggested a role of varying degrees of DNA methylation in the differential regulation of μ-opioid receptor expression across the brain. Methods: In a translational investigation, using tissue acquired postmortem from 21 brain regions of former opiate addicts, representing a human cohort with chronic opioid exposure, μ-opioid receptor expression was analyzed at the level of DNA methylation, mRNA and protein. Results & conclusion: While high or low μ-opioid receptor expression significantly correlated with local OPRM1 mRNA levels, there was no corresponding association with OPRM1 methylation status. Additional experiments in human cell lines showed that changes in DNA methylation associated with changes in μ-opioid expression were an order of magnitude greater than differences in brain. Hence, different degrees of DNA methylation associated with chronic opioid exposure are unlikely to exert a major role in the region-specificity of μ-opioid receptor expression in the human brain.