Refine
Keywords
- Animal disease models (1)
- Glaucoma (1)
- Immunohistochemistry (1)
- bioactive lipids (1)
- blood pressure (1)
- exercise (1)
- post-exercise hypotension (1)
- Exercise-induced changes in bioactive lipids might serve as potential predictors of post-exercise hypotension. A pilot study in healthy volunteers (2020)
- Post-exercise hypotension (PEH) is the phenomenon of lowered blood pressure after a single bout of exercise. Only a fraction of people develops PEH but its occurrence correlates well with long-term effects of sports on blood pressure. Therefore, PEH has been suggested as a suitable predictor for the effectivity of exercise as therapy in hypertension. Local vascular bioactive lipids might play a potential role in this context. We performed a cross-over clinical pilot study with 18 healthy volunteers to investigate the occurrence of PEH after a single short-term endurance exercise. Furthermore, we investigated the plasma lipid profile with focus on arachidonic acid (AA)-derived metabolites as potential biomarkers of PEH. A single bout of ergometer cycling induced a significant PEH in healthy volunteers with the expected high inter-individual variability. Targeted lipid spectrum analysis revealed significant upregulation of several lipids in the direct post-exercise phase. Among these changes, only 15- hydroxyeicosatetranoic acid (HETE) correlated significantly with the extent of PEH but in an AA-independent manner, suggesting that 15-HETE might act as specific PEH-marker. Our data indicate that specific lipid modulation might facilitate the identification of patients who will benefit from exercise activity in hypertension therapy. However, larger trials including hypertonic patients are necessary to verify the clinical value of this hypothesis.
- Cyp2c44 epoxygenase-derived epoxyeicosatrienoic acids in vascular smooth muscle cells elicit vasoconstriction of the murine ophthalmic artery (2021)
- Cytochrome P450 (CYP) signalling pathway has been shown to play a vital role in the vasoreactivity of wild type mouse ophthalmic artery. In this study, we determined the expression, vascular responses and potential mechanisms of the CYP-derived arachidonic acid metabolites. The expression of murine CYP (Cyp2c44) and soluble epoxide hydrolase (sEH) in the wild type ophthalmic artery was determined with immunofluorescence, which showed predominant expression of Cyp2c44 in the vascular smooth muscle cells (VSMC), while sEH was found mainly in the endothelium of the wild type ophthalmic artery. Artery of Cyp2c44−/− and sEH−/− mice were used as negative controls. Targeted mass spectrometry-based lipidomics analysis of endogenous epoxide and diols of the wild type artery detected only 14, 15-EET. Vasorelaxant responses of isolated vessels in response to selective pharmacological blockers and agonist were analysed ex vivo. Direct antagonism of epoxyeicosatrienoic acids (EETs) with a selective inhibitor caused partial vasodilation, suggesting that EETs may behave as vasoconstrictors. Exogenous administration of synthetic EET regioisomers significantly constricted the vessels in a concentration-dependent manner, with the strongest responses elicited by 11, 12- and 14, 15-EETs. Our results provide the first experimental evidence that Cyp2c44-derived EETs in the VSMC mediate vasoconstriction of the ophthalmic artery.