### Refine

#### Year of publication

#### Document Type

- Preprint (15)
- Article (12)
- Conference Proceeding (5)

#### Keywords

- Kollisionen schwerer Ionen (6)
- MEMOs (6)
- heavy ion collisions (6)
- Quark-Gluon-Plasma (5)
- quark-gluon-plasma (5)
- QGP (4)
- LHC (2)
- Quark-Gluon-Plasma (2)
- RHIC (2)
- Strangelets (2)

#### Institute

- Chemical equilibration due to heavy Hagedorn states (2004)
- A scenario of heavy resonances, called massive Hagedorn states, is proposed which exhibits a fast (t H 1 fm/c) chemical equilibration of (strange) baryons and anti-baryons at the QCD critical temperature Tc. For relativistic heavy ion collisions this scenario predicts that hadronization is followed by a brief expansion phase during which the equilibration rate is higher than the expansion rate, so that baryons and antibaryons reach chemical equilibrium before chemical freeze-out occurs. PACS-Nr.: 12.38.Mh

- Distillation of strangelets for low initial mu/T (1995)
- We calculate the evolution of quark-gluon-plasma droplets during the hadronization in a thermodynamical model. It is speculated that cooling as well as strangeness enrichment allow for the formation of strangelets even at very high initial entropy per baryon S/Ainit H 500 and low initial baryon numbers of Ainit B H 30. It is shown that the droplet with vanishing initial chemical potential of strange quarks and a very moderate chemical potential of up/down quarks immediately charges up with strangeness. Baryon densi- ties of H 2 0 and strange chemical potentials of µs > 350 MeV are reached if strangelets are stable. The importance of net baryon and net strangeness fluctuations for the possible strangelet formation at RHIC and LHC is em- phasized. Pacs-Classif.: 25.15.tr, 12.38.Mh, 24.85.tp

- Hypermatter : properties and formation in relativistic nuclear collisions (1995)
- The extension of the Periodic System into hitherto unexplored domains - anti- matter and hypermatter - is discussed. Starting from an analysis of hyperon and single hypernuclear properties we investigate the structure of multi-hyperon objects (MEMOs) using an extended relativistic meson field theory. These are contrasted with multi-strange quark states (strangelets). Their production mechanism is stud- ied for relativistic collisions of heavy ions from present day experiments at AGS and SPS to future opportunities at RHIC and LHC. It is pointed out that abso- lutely stable hypermatter is unlikely to be produced in heavy ion collisions. New attention should be focused on short lived metastable hyperclusters ( / 10 10s) and on intensity interferometry of multi-strange-baryon correlations.

- Creation of strange matter at low initial m/T (1996)
- We demonstrate that the creation of strange matter is conceivable in the midrapidity region of heavy ion collisions at Brookhaven RHIC and CERN LHC. A finite net-baryon density, abundant (anti)strangeness production, as well as strong net-baryon and net-strangeness fluctuations, provide suitable initial conditions for the formation of strangelets or metastable exotic multistrange ( baryonic) objects. Even at very high initial entropy per baryon SyAinit ¯ 500 and low initial baryon numbers of Ainit B ¯ 30 a quark-gluon-plasma droplet can immediately charge up with strangeness and accumulate net-baryon number. PACS numbers: 25.75.Dw, 12.38.Mh, 24.85.+

- Dynamics of strangeness production and strange matter formation (1996)
- We want to draw the attention to the dynamics of a (finite) hadronizing quark matter drop. Strange and antistrange quarks do not hadronize at the same time for a baryon-rich system1. Both the hadronic and the quark matter phases enter the strange sector fs 6= 0 of the phase diagram almost immediately, which has up to now been neglected in almost all calculations of the time evolution of the system. Therefore it seems questionable, whether final particle yields reflect the actual thermodynamic properties of the system at a certain stage of the evolution. We put special interest on the possible formation of exotic states, namely strangelets (multistrange quark clusters). They may exist as (meta-)stable exotic isomers of nuclear matter 2. It was speculated that strange matter might exist also as metastable exotic multi-strange (baryonic) objects (MEMO s 3). The possible creation in heavy ion collisions of long-lived remnants of the quark-gluon-plasma, cooled and charged up with strangeness by the emission of pions and kaons, was proposed in 1,4,5. Strangelets can serve as signatures for the creation of a quark gluon plasma. Currently, both at the BNL-AGS and at the CERN-SPS experiments are carried out to search for MEMO s and strangelets, e. g. by the E864, E878 and the NA52 collaborations9,

- Baryon stopping and strangeness production in ultra-relativistic heavy ion collisions (1996)
- The stopping behaviour of baryons in massive heavy ion collisions ( s k 10AGeV) is investigated within di erent microscopic models. At SPS-energies the predictions range from full stopping to virtually total transparency. Experimental data are indicating strong stopping. The initial baryo-chemical potentials and temperatures at collider energies and their impact on the formation probability of strange baryon clusters and strangelets are discussed.

- Hadron production from a hadronizing quark-gluon plasma (1997)
- Measured hadron yields from relativistic nuclear collisions can be equally well understood in two physically distinct models, namely a static thermal hadronic source versus a time-dependent, non-equilibrium hadronization off a quark gluon plasma droplet. Due to the time-dependent particle evaporation off the hadronic surface in the latter approach the hadron ratios change (by factors of / 5) in time. The overall particle yields then reflect time averages over the actual thermodynamic properties of the system at a certain stage of evolution.

- Hadron production in relativistic nuclear collisions : Thermal hadron source or hadronizing quark-gluon plasma? (1997)
- Measured hadron yields from relativistic nuclear collisions can be equally well understood in two physically distinct models, namely a static thermal hadronic source vs. a time-dependent, nonequilibrium hadronization o a quark-gluon plasma droplet. Due to the time-dependent particle evapora- tion o the hadronic surface in the latter approach the hadron ratios change (by factors of <H 5) in time. Final particle yields reflect time averages over the actual thermodynamic properties of the system at a certain stage of the evolution. Calculated hadron, strangelet and (anti-)cluster yields as well as freeze-out times are presented for di erent systems. Due to strangeness distillation the system moves rapidly out of the T, µq plane into the µs-sector. Classif.: 25.75.Dw, 12.38.Mh, 24.85.+p

- Hadron and hadron cluster production in a hydrodynamical model including particle evaporation (1997)
- We discuss the evolution of the mixed phase at RHIC and SPS within boostinvariant hydrodynamics. In addition to the hydrodynamical expansion, we also consider evaporation of particles o the surface of the fluid. The back-reaction of this evaporation process on the dynamics of the fluid shortens the lifetime of the mixed phase. In our model this lifetime of the mixed phase is d 12 fm/c in Au + Au at RHIC and d 6.5 fm/c in Pb + Pb at SPS, even in the limit of vanishing transverse expansion velocity. Strong separation of strangeness occurs, especially in events (or at rapidities) with relatively high initial net baryon and strangeness number, enhancing the multiplicity of MEMOs (multiply strange nuclear clusters). If antiquarks and antibaryons reach saturation in the course of the pure QGP or mixed phase, we find that at RHIC the ratio of antideuterons to deuterons may exceed 0.3 and even 4He/4He > 0.1. In S + Au at SPS we find only N/N H 0.1. Due to fluctuations, at RHIC even negative baryon number at midrapidity is possible in individual events, so that the antibaryon and antibaryon-cluster yields exceed those of the corresponding baryons and clusters.

- Phase transition of a finite quark-gluon plasma (1997)
- The deconfinement transition region between hadronic matter and quark-gluon plasma is studied for finite volumes. Assuming simple model equations of state and a first order phase transition, we find that fluctuations in finite volumes hinder a sharp separation between the two phases around the critical temperature, leading to a rounding of the phase transition. For reaction volumes expected in heavy ion experiments, the softening of the equation of state is reduced considerably. This is especially true when the requirement of exact color-singletness is included in the QGP equation of state.