### Refine

#### Year of publication

#### Document Type

- Preprint (15)
- Article (11)
- Conference Proceeding (2)

#### Keywords

- Kollisionen schwerer Ionen (6)
- MEMOs (6)
- heavy ion collisions (6)
- Quark-Gluon-Plasma (5)
- quark-gluon-plasma (5)
- QGP (4)
- RHIC (2)
- Strangelets (2)
- strangelets (2)
- Chemical equilibration (1)

#### Institute

- Unlike particle correlations and the strange quark matter distillation process (2002)
- We present a new technique for observing the strange quark matter distillation process based on unlike particle correlations. A simulation is presented based on the scenario of a two-phase thermodynamical evolution model.

- Strange hadronic matter (1993)
- In an extended mean field theory, we find a large class of bound multistrange objects, formed from combinations of {p,n,Λ,Ξ0,Ξ-} baryons, which are stable against strong decay. We predict a maximal binding energy per baryon of EB/A≊-21 MeV, strangeness per baryon fs≊1.2, charge per baryon fq≊-0.1 to 0, and baryon density 2.5–3 times that of ordinary nuclei. For A≥6, we obtain stable combinations involving only {Λ,Ξ0,Ξ-} hyperons.

- Separation of strangeness from antistrangeness in the phase transition from quark to hadron matter: Possible formation of strange quark matter in heavy-ion collisions (1987)
- We present a mechanism for the separation of strangeness from antistrangeness in the deconfinement transition. For a net strangeness of zero in the total system, the population of s quarks is greatly enriched in the quark-gluon plasma, while the s¯ quarks drift into the hadronic phase. This separation could result in ‘‘strangelet’’ formation, i.e., metastable blobs of strange-quark matter, which could serve as a unique signature for quark-gluon plasma formation in heavy-ion collisions. PACS: 25.70.Np, 12.38.Mh

- Search for production of strangelets in quark matter using particle correlations (1997)
- We present a new technique for observing the strangelet production in quark matter based on unlike particle correlations. A simulation is presented with a two-phase thermodynamical model.

- RHIC and LHC phenomena with an unified parton transport (2012)
- We discuss recent applications of the partonic pQCD based cascade model BAMPS with focus on heavy-ion phenomeneology in hard and soft momentum range. The nuclear modification factor as well as elliptic flow are calculated in BAMPS for RHIC end LHC energies. These observables are also discussed within the same framework for charm and bottom quarks. Contributing to the recent jet-quenching investigations we present first preliminary results on application of jet reconstruction algorithms in BAMPS. Finally, collective effects induced by jets are investigated: we demonstrate the development of Mach cones in ideal matter as well in the highly viscous regime.

- Relativistic shock waves and Mach cones in viscous gluon matter (2010)
- To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio n/s. Furthermore we compare our results with those obtained by solving the relativistic causal dissipative fluid equations of Israel and Stewart (IS), in order to show the validity of the IS hydrodynamics. Employing the parton cascade we also investigate the formation of Mach shocks induced by a high-energy gluon traversing viscous gluon matter. For n/s = 0.08 a Mach cone structure is observed, whereas the signal smears out for n/s >=0.32.

- Properties of exotic matter for heavy ion searches (1997)
- We examine the properties of both forms of strange matter, small lumps of strange quark matter (strangelets) and of strange hadronic matter (Metastable Exotic Multihypernuclear Objects: MEMOs) and their relevance for present and future heavy ion searches. The strong and weak decays are discussed separately to distinguish between long-lived and short-lived candidates where the former ones are detectable in present heavy ion experiments while the latter ones in future heavy ion experiments, respectively. We find some long-lived strangelet candidates which are highly negatively charged with a mass to charge ratio like a anti deuteron (M/Z 2) but masses of A=10 to 16. We predict also many short-lived candidates, both in quark and in hadronic form, which can be highly charged. Purely hyperonic nuclei like the (2 02 ) are bound and have a negative charge while carrying a positive baryon number. We demonstrate also that multiply charmed exotics (charmlets) might be bound and can be produced at future heavy ion colliders.

- Phase transition of a finite quark-gluon plasma (1997)
- The deconfinement transition region between hadronic matter and quark-gluon plasma is studied for finite volumes. Assuming simple model equations of state and a first order phase transition, we find that fluctuations in finite volumes hinder a sharp separation between the two phases around the critical temperature, leading to a rounding of the phase transition. For reaction volumes expected in heavy ion experiments, the softening of the equation of state is reduced considerably. This is especially true when the requirement of exact color-singletness is included in the QGP equation of state.

- Metastable exotic multihypernuclear objects (1992)
- Relativistic heavy ion collisions constitute a prolific source of hyperons: tens of hyperons per event are predicted at energies E≥10 GeV/nucleon, providing a scenario for the formation of metastable exotic multihypernuclear objects. They may exhibit exceptional properties: bound neutral (e.g., 4M2Λ2n, 10M2Λ8n, pure Λ droplets, 8Λ) and even negatively charged composites objects with positive baryon number (e.g., 4M2Σ-2n, 6M2Λ2Ξ-2n) could be formed in rare events. Such negative nuclei can easily be identified in a magnetic spectrometer. They could be considerably more abundant than antinuclei of the same A. We use the relativistic meson-baryon field theory—which gives an excellent description of normal nuclear and single-Λ hypernuclear properties—to calculate the rich spectrum of such exotic objects, their stability, and their structure. We also find solutions for a large variety of bound short-lived nuclei (e.g., 8M2Λ,2Σ-2p2n), which may decay strongly via formation of cascade (Ξ) particles. Multi-Ξ hypernuclei are also evaluated. A variety of potential candidates for such metastable exotic nuclei is presented. It turns out that the properties of such exotic multihypernuclear objects reveal quite similar features as the strangelet proposed as a unique signature for quark-gluon plasma formation in heavy ion collisions.

- Investigation of shear stress and shear flow within a partonic transport model (2010)
- Starting from a classical picture of shear viscosity we construct a steady velocity gradient in the partonic cascade BAMPS. Using the Navier-Stokes-equation we calculate the shear viscosity coefficient. For elastic isotropic scatterings we find a very good agreement with the analytic values. For both elastic and inelastic scatterings with pQCD cross sections we find good agreement with previously published calculations.