### Refine

#### Keywords

- Approximation algorithm (1)
- Computational complexity (1)
- Integer relations (1)
- Label cover (1)
- NP-hard (1)
- Probabilistically checkable proofs (1)

#### Institute

- Informatik (3)
- Mathematik (3)

- On the hardness of approximating shortest integer relations among rational numbers (1996)
- Given x small epsilon, Greek Rn an integer relation for x is a non-trivial vector m small epsilon, Greek Zn with inner product <m,x> = 0. In this paper we prove the following: Unless every NP language is recognizable in deterministic quasi-polynomial time, i.e., in time O(npoly(log n)), the ℓinfinity-shortest integer relation for a given vector x small epsilon, Greek Qn cannot be approximated in polynomial time within a factor of 2log0.5 − small gamma, Greekn, where small gamma, Greek is an arbitrarily small positive constant. This result is quasi-complementary to positive results derived from lattice basis reduction. A variant of the well-known L3-algorithm approximates for a vector x small epsilon, Greek Qn the ℓ2-shortest integer relation within a factor of 2n/2 in polynomial time. Our proof relies on recent advances in the theory of probabilistically checkable proofs, in particular on a reduction from 2-prover 1-round interactive proof-systems. The same inapproximability result is valid for finding the ℓinfinity-shortest integer solution for a homogeneous linear system of equations over Q.

- Approximating good simultaneous diophantine approximations is almost NP-hard (1997)
- Given a real vector alpha =(alpha1 ; : : : ; alpha d ) and a real number E > 0 a good Diophantine approximation to alpha is a number Q such that IIQ alpha mod Zk1 ", where k \Delta k1 denotes the 1-norm kxk1 := max 1id jx i j for x = (x1 ; : : : ; xd ). Lagarias [12] proved the NP-completeness of the corresponding decision problem, i.e., given a vector ff 2 Q d , a rational number " ? 0 and a number N 2 N+ , decide whether there exists a number Q with 1 Q N and kQff mod Zk1 ". We prove that, unless ...

- The complexity of approximate optima for greatest common divisor computations (1996)
- We study the approximability of the following NP-complete (in their feasibility recognition forms) number theoretic optimization problems: 1. Given n numbers a1 ; : : : ; an 2 Z, find a minimum gcd set for a1 ; : : : ; an , i.e., a subset S fa1 ; : : : ; ang with minimum cardinality satisfying gcd(S) = gcd(a1 ; : : : ; an ). 2. Given n numbers a1 ; : : : ; an 2 Z, find a 1-minimum gcd multiplier for a1 ; : : : ; an , i.e., a vector x 2 Z n with minimum max 1in jx i j satisfying P n...