### Refine

#### Year of publication

#### Keywords

- Kollisionen schwerer Ionen (11)
- heavy ion collisions (9)
- heavy ion collisions (9)
- Kollisionen schwerer Ionen (8)
- Quark-Gluon-Plasma (6)
- QGP (5)
- Quark-Gluon-Plasma (5)
- quark-gluon-plasma (5)
- MEMOs (4)
- UrQMD (4)

- Baryon stopping and strangeness production in ultra-relativistic heavy ion collisions (1996)
- The stopping behaviour of baryons in massive heavy ion collisions ( s k 10AGeV) is investigated within di erent microscopic models. At SPS-energies the predictions range from full stopping to virtually total transparency. Experimental data are indicating strong stopping. The initial baryo-chemical potentials and temperatures at collider energies and their impact on the formation probability of strange baryon clusters and strangelets are discussed.

- Hadron production in relativistic nuclear collisions : Thermal hadron source or hadronizing quark-gluon plasma? (1997)
- Measured hadron yields from relativistic nuclear collisions can be equally well understood in two physically distinct models, namely a static thermal hadronic source vs. a time-dependent, nonequilibrium hadronization o a quark-gluon plasma droplet. Due to the time-dependent particle evapora- tion o the hadronic surface in the latter approach the hadron ratios change (by factors of <H 5) in time. Final particle yields reflect time averages over the actual thermodynamic properties of the system at a certain stage of the evolution. Calculated hadron, strangelet and (anti-)cluster yields as well as freeze-out times are presented for di erent systems. Due to strangeness distillation the system moves rapidly out of the T, µq plane into the µs-sector. Classif.: 25.75.Dw, 12.38.Mh, 24.85.+p

- Hadron and hadron cluster production in a hydrodynamical model including particle evaporation (1997)
- We discuss the evolution of the mixed phase at RHIC and SPS within boostinvariant hydrodynamics. In addition to the hydrodynamical expansion, we also consider evaporation of particles o the surface of the fluid. The back-reaction of this evaporation process on the dynamics of the fluid shortens the lifetime of the mixed phase. In our model this lifetime of the mixed phase is d 12 fm/c in Au + Au at RHIC and d 6.5 fm/c in Pb + Pb at SPS, even in the limit of vanishing transverse expansion velocity. Strong separation of strangeness occurs, especially in events (or at rapidities) with relatively high initial net baryon and strangeness number, enhancing the multiplicity of MEMOs (multiply strange nuclear clusters). If antiquarks and antibaryons reach saturation in the course of the pure QGP or mixed phase, we find that at RHIC the ratio of antideuterons to deuterons may exceed 0.3 and even 4He/4He > 0.1. In S + Au at SPS we find only N/N H 0.1. Due to fluctuations, at RHIC even negative baryon number at midrapidity is possible in individual events, so that the antibaryon and antibaryon-cluster yields exceed those of the corresponding baryons and clusters.

- A Microscopic calculation of secondary Drell-Yan production in heavy ion collisions (1997)
- A study of secondary Drell-Yan production in nuclear collisions is presented for SPS energies. In addition to the lepton pairs produced in the initial collisions of the projectile and target nucleons, we consider the potentially high dilepton yield from hard valence antiquarks in produced mesons and antibaryons. We calculate the secondary Drell-Yan contributions taking the collision spectrum of hadrons from the microscopic model URQMD. The con- tributions from meson-baryon interactions, small in hadron-nucleus interac- tions, are found to be substantial in nucleus-nucleus collisions at low dilepton masses. Preresonance collisions of partons may further increase the yields.

- Phase transition of a finite quark-gluon plasma (1997)
- The deconfinement transition region between hadronic matter and quark-gluon plasma is studied for finite volumes. Assuming simple model equations of state and a first order phase transition, we find that fluctuations in finite volumes hinder a sharp separation between the two phases around the critical temperature, leading to a rounding of the phase transition. For reaction volumes expected in heavy ion experiments, the softening of the equation of state is reduced considerably. This is especially true when the requirement of exact color-singletness is included in the QGP equation of state.

- Intermediate mass dileptons from secondary Drell-Yan processes (1998)
- Recent reports on enhancements of intermediate and hight mass muon pairs producedin heavy ion collisions have attracted much attention.

- Fluctuations and inhomogenities of energy density and isospin in Pb + Pb at the SPS (1998)
- The main goal of heavy ion physics in the last fifteen years has been the search for the quark-gluon-plasma(QGP). Until now, unambigous experimental evidence for the QGP is missing.

- Direct photons in Pb+Pb at CERN-SPS from microscopic transport theory (1997)
- Direct photon production in central Pb+Pb collisions at CERN-SPS energy is calculated within the relativistic microscopic transport model UrQMD, and within distinctly di erent versions of relativistic hydrodynamics. We find that in UrQMD the local momentum distributions of the secondaries are strongly elongated along the beam axis initially. Therefore, the preequilibrium contribution dominates the photon spectrum at transverse momenta above H 1.5 GeV. The hydrodynamics prediction of a strong correlation between the temperature and radial expansion velocities on the one hand and the slope of the transverse momentum distribution of direct photons on the other hand thus is not recovered in UrQMD. The rapidity distribution of direct photons in UrQMD reveals that the initial conditions for the longitudinal expansion of the photon source (the meson fluid ) resemble rather boostinvariance than Landau-like flow.

- Can momentum correlations proof kinetic equilibration in heavy ion collisions at 160/A-GeV? (1998)
- We perform an event-by-event analysis of the transverse momentum distribution of final state particles in central Pb(160AGeV)+Pb collisions within a microscopic non-equilibrium transport model (UrQMD). Strong influence of rescattering is found. The extracted momentum distributions show less fluctuations in A+A collisions than in p+p reactions. This is in contrast to simplified p+p extrapolations and random walk models.

- Excitation function of energy density and partonic degrees of freedom in relativistic heavy ion collisions (1998)
- We estimate the energy density epsilon pile-up at mid-rapidity in central Pb+Pb collisions from 2 200 GeV/nucleon. epsilon is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for Elab 30 GeV/nucleon. In Pb+Pb collisions at 160 GeV/nucleon the energy density reaches up to 4 GeV/fm3, 95% of which are contained in partonic degrees of freedom.