Refine
Keywords
- polytrauma (2)
- GFAP (1)
- IL-10 (1)
- IL-6 (1)
- Injury Severity Score (ISS) (1)
- NSE (1)
- S100b (1)
- SNORD95 (1)
- biomarker (1)
- geriatric patients (1)
- miR-142-3p expression is predictive for severe traumatic brain injury (TBI) in trauma patients (2020)
- Background: Predictive biomarkers in biofluids are the most commonly used diagnostic method, but established markers in trauma diagnostics lack accuracy. This study investigates promisingmicroRNAs(miRNA)releasedfromaffectedtissueafterseveretraumathathavepredictive values for the effects of the injury. Methods: A retrospective analysis of prospectively collected data and blood samples of n = 33 trauma patients (ISS≥16) is provided. Levels of miR-9-5p, -124-3p, -142-3p, -219a-5p, -338-3pand-423-3p inseverelyinjuredpatients (PT)withouttraumatic braininjury (TBI) or with severe TBI (PT + TBI) and patients with isolated TBI (isTBI) were measured within 6 h after trauma. Results: The highest miR-423-3p expression was detected in patients with severe isTBI, followed by patients with PT + TBI, and lowest levels were found in PT patients without TBI (2−∆∆Ct,p = 0.009). ApositivecorrelationbetweenmiR-423-3plevelandincreasingAIShead (p = 0.001) and risk of mortality (RISC II, p = 0.062) in trauma patients (n = 33) was found. ROC analysis of miR-423-3p levels revealed them as statistically significant to predict the severity of brain injury in trauma patients (p = 0.006). miR-124-3p was only found in patients with severe TBI, miR-338-3p was shown in all trauma groups. miR-9-5p, miR-142-3p and miR-219a-5p could not be detected in any of the four groups. Conclusion: miR-423-3p expression is significantly elevated after isolated traumatic braininjuryandpredictableforsevereTBIinthefirsthoursaftertrauma. miR-423-3pcouldrepresent a promising new biomarker to identify severe isolated TBI.
- Registry-based mortality analysis reveals a high proportion of patient decrees and presumed limitation of therapy in severe geriatric trauma (2020)
- Background: The treatment of severely injured patients, especially in older age, is complex, and based on strict guidelines. Methods: We conducted a retrospective study by analyzing our internal registry for mortality risk factors in deceased trauma patients. All patients that were admitted to the trauma bay of our level-1-trauma center from 2014 to 2018, and that died during the in-hospital treatment, were included. The aim of this study was to carry out a quality assurance concerning the initial care of severely injured patients. Results: In the 5-year period, 135 trauma patients died. The median (IQR) age was 69 (38–83) years, 71% were male, and the median (IQR) Injury Severity Score (ISS) was 25 (17–34) points. Overall, 41% of the patients suffered from severe traumatic brain injuries (TBI) (AIShead ≥ 4 points). For 12.7%, therapy was finally limited owing to an existing patient’s decree; in 64.9% with an uncertain prognosis, a ‘therapia minima’ was established in consensus with the relatives. Conclusion: Although the mortality rate was primarily related to the severity of the injury, a significant number of deaths were not exclusively due to medical reasons, but also to a self-determined limitation of therapy for severely injured geriatric patients. The conscientious documentation concerning the will of the patient is increasingly important in supporting medical decisions.
- Severe traumatic brain injury (TBI) modulates the kinetic profile of the inflammatory response of markers for neuronal damage (2020)
- The inflammatory response plays an important role in the pathophysiology of multiple injuries. This study examines the effects of severe trauma and inflammatory response on markers of neuronal damage. A retrospective analysis of prospectively collected data in 445 trauma patients (Injury Severity Score (ISS) ≥ 16) is provided. Levels of neuronal biomarkers (calcium-binding Protein B (S100b), Enolase2 (NSE), glial fibrillary acidic protein (GFAP)) and Interleukins (IL-6, IL-10) in severely injured patients (with polytrauma (PT)) without traumatic brain injury (TBI) or with severe TBI (PT+TBI) and patients with isolated TBI (isTBI) were measured upon arrival until day 5. S100b, NSE, GFAP levels showed a time-dependent decrease in all cohorts. Their expression was higher after multiple injuries (p = 0.038) comparing isTBI. Positive correlation of marker level after concomitant TBI and isTBI (p = 0.001) was noted, while marker expression after PT appears to be independent. Highest levels of IL-6 and -10 were associated to PT und lowest to isTBI (p < 0.001). In all groups pro-inflammatory response (IL-6/-10 ratio) peaked on day 2 and at a lower level on day 4. Severe TBI modulates kinetic profile of inflammatory response by reducing interleukin expression following trauma. Potential markers for neuronal damage have a limited diagnostic value after severe trauma because undifferentiated increase.