Refine
Keywords
- DNA methylation (1)
- OPRM1 methylation (1)
- acetylcholine receptors (1)
- gland extracts (1)
- human brain (1)
- potassium channels (1)
- sodium channels (1)
- terebridae venom (1)
- μ-opioid receptor regulation (1)
Institute
- Medizin (4) (remove)
- Pharmacoepigenetics of the role of DNA methylation in μ-opioid receptor expression in different human brain regions (2016)
- Aim: Exposure to opioids has been associated with epigenetic effects. Studies in rodents suggested a role of varying degrees of DNA methylation in the differential regulation of μ-opioid receptor expression across the brain. Methods: In a translational investigation, using tissue acquired postmortem from 21 brain regions of former opiate addicts, representing a human cohort with chronic opioid exposure, μ-opioid receptor expression was analyzed at the level of DNA methylation, mRNA and protein. Results & conclusion: While high or low μ-opioid receptor expression significantly correlated with local OPRM1 mRNA levels, there was no corresponding association with OPRM1 methylation status. Additional experiments in human cell lines showed that changes in DNA methylation associated with changes in μ-opioid expression were an order of magnitude greater than differences in brain. Hence, different degrees of DNA methylation associated with chronic opioid exposure are unlikely to exert a major role in the region-specificity of μ-opioid receptor expression in the human brain.
- Venomous secretions from marine snails of the Terebridae family target acetylcholine receptors (2013)
- Venoms from cone snails (Conidae) have been extensively studied during the last decades, but those from other members of the suborder Toxoglossa, such as of Terebridae and Turridae superfamilies attracted less interest so far. Here, we report the effects of venom and gland extracts from three species of the superfamily Terebridae. By 2-electrode voltage-clamp technique the gland extracts were tested on Xenopus oocytes expressing nicotinic acetylcholine receptors (nAChRs) of rat neuronal (α3β2, α3β4, α4β2, α4β4, α7) and muscle subtypes (α1β1γδ), and expressing potassium (Kv1.2 and Kv1.3) and sodium channels (Nav1.2, 1.3, 1.4, 1.6). The extracts were shown to exhibit remarkably high inhibitory activities on almost all nAChRs tested, in particular on the α7 subtype suggesting the presence of peptides of the A-superfamily from the venom of Conus species. In contrast, no effects on the potassium and sodium channels tested were observed. The venoms of terebrid snails may offer an additional source of novel biologically active peptides.
- Chemical camouflage : a frog's strategy to co-exist with aggressive ants (2013)
- Whereas interspecific associations receive considerable attention in evolutionary, behavioural and ecological literature, the proximate bases for these associations are usually unknown. This in particular applies to associations between vertebrates with invertebrates. The West-African savanna frog Phrynomantis microps lives in the underground nest of ponerine ants (Paltothyreus tarsatus). The ants usually react highly aggressively when disturbed by fiercely stinging, but the frog is not attacked and lives unharmed among the ants. Herein we examined the proximate mechanisms for this unusual association. Experiments with termites and mealworms covered with the skin secretion of the frog revealed that specific chemical compounds seem to prevent the ants from stinging. By HPLC-fractionation of an aqueous solution of the frogs' skin secretion, two peptides of 1,029 and 1,143 Da were isolated and found to inhibit the aggressive behaviour of the ants. By de novo sequencing using tandem mass spectrometry, the amino acid sequence of both peptides consisting of a chain of 9 and 11 residues, respectively, was elucidated. Both peptides were synthesized and tested, and exhibited the same inhibitory properties as the original frog secretions. These novel peptides most likely act as an appeasement allomone and may serve as models for taming insect aggression.
- Blutiger Beweis : was Rechtsmediziner aus Blutspuren schließen können (2010)
- Blut-Untersuchungen ziehen sich wie ein roter Faden durch die verschiedenen Abteilungen des Frankfurter Instituts für Rechtsmedizin. Ob mit dem Skalpell, durch scharfsinnige Beobachtung oder Hightech-Laboranalytik: Spezialisierte Rechtsmediziner können einen Tathergang anhand von Blutspurenverteilungsmustern rekonstruieren, Toxikologen messen im Blut betäubende oder giftige Substanzen, Molekularbiologen ordnen Blutspuren über DNA-Profi le Personen zu und versuchen, mit molekulardiagnostischen Methoden unklare Todesursachen aufzuklären. Zwei konstruierte Todesfälle gewähren einen forensischen Blick auf das Blut.