### Refine

#### Year of publication

#### Document Type

- Preprint (17)
- Article (4)
- Doctoral Thesis (1)

#### Keywords

- Dirac (2)
- QCD (2)
- Quanten-Chromodynamik (2)
- Quark Gluon Plasma (2)
- heavy ion collisions (2)
- heavy-ion collisions (2)
- relativistic (2)
- Dichte (1)
- Distributed software development (1)
- Elementarteilchen (1)

#### Institute

- Hypermatter in chiral field theory (1997)
- Abstract. A generalized Lagrangian for the description of hadronic matter based on the linear SU(3)L × SU(3)R -model is proposed. Besides the baryon octet, the spin-0 and spin-1 nonets, a gluon condensate associated with broken scale invariance is incorporated. The observed values for the vacuum masses of the baryons and mesons are reproduced. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation of state. Finite nuclei can be reasonably described, too. The condensates and the e ective baryon masses at finite baryon density and temperature are discussed.

- Neutron star properties in a chiral SU(3) model (1999)
- We investigate various properties of neutron star matter within an e ective chiral SU(3)L × SU(3)R model. The predictions of this model are compared with a Walecka-type model. It is demonstrated that the importance of hy- peron degrees are strongly depending on the interaction used, even if the equation of state near saturation density is nearly the same in both models. While the Walecka-type model predicts a strange star core with strangeness fraction fS 4/3, the chiral model allows only for fS 1/3 and predicts that 0, + and 0 will not exist in star, in contrast to the Walecka-type model. PACS: 26.60+c, 21.65+f, 24.10Jv

- Superheavy nuclei in a chiral hadronic model (2000)
- Superheavy nuclei are investigated in a nonlinear chiral SU(3)-model. The proton number Z=120 and neutron numbers of N=172, 184 and 198 are predicted to be magic. The charge distributions and alpha-decay chains hint towards a hollow stucture.

- Nuclei, superheavy nuclei, and hypermatter in a chiral SU(3) model (2001)
- A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.

- Space-time evolution and HBT analysis of relativistic heavy ion collisions in a chiral SU(3) x SU(3) model (2002)
- The space-time dynamics and pion-HBT radii in central heavy ion-collisions at CERN-SPS and BNL-RHIC are investigated within a hydrodynamic simulation. The dependence of the dynamics and the HBT-parameters on the EoS is studied with different parametrizations of a chiral SU(3) sigma omega model. The selfconsistent collective expansion includes the e ects of e ective hadron masses, generated by the nonstrange and strange scalar condensates. Different chiral EoS show di erent types of phase transitions and even a crossover. The influence of the order of the phase transition and of the latent heat on the space-time dynamics and pion-HBT radii is studied. A small latent heat, i.e. a weak first-order chiral phase transition, or a smooth crossover lead to distinctly di erent HBT predictions than a strong first order phase transition. A quantitative description of the data, both at SPS energies as well as at RHIC energies, appears di cult to achieve within the ideal hydrodynamic approach using the SU(3) chiral EoS. A strong first-order quasi-adiabatic chiral phase transition seems to be disfavored by the pion-HBT data from CERN-SPS and BNL-RHIC.

- In-medium vector meson masses in a chiral SU(3) model (2003)
- A significant drop of the vector meson masses in nuclear matter is observed in a chiral SU(3) model due to the e ects of the baryon Dirac sea. This is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation. The appreciable decrease of the in-medium vector meson masses is due to the vacuum polarisation e ects from the nucleon sector and is not observed in the mean field approximation.

- Particle ratios from AGS to RHIC in an interacting hadronic model (2003)
- Abstract: The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) Ã É approach. The commonly adopted non-interacting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. In contrast, the chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters differ considerably from those obtained in simple non-interacting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The inmedium masses turn out to differ up to 150 MeV from their vacuum values.

- Impact of baryon resonances on the chiral phase transition at finite temperature and density (2004)
- We study the phase diagram of a generalized chiral SU(3)-flavor model in mean-field approxi- mation. In particular, the influence of the baryon resonances, and their couplings to the scalar and vector fields, on the characteristics of the chiral phase transition as a function of temperature and baryon-chemical potential is investigated. Present and future finite-density lattice calculations might constrain the couplings of the fields to the baryons. The results are compared to recent lattice QCD calculations and it is shown that it is non-trivial to obtain, simultaneously, stable cold nuclear matter.

- Current status of quark gluon plasma signals (2001)
- Compelling evidence for the creation of a new form of matter has been claimed to be found in Pb+Pb collisions at SPS. We discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that so far none of the proposed signals like J/psi meson production/suppression, strangeness enhancement, dileptons, and directed flow unambigiously show that a phase of deconfined matter has been formed in SPS Pb+Pb collisions. We emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data.

- Enhanced strange particle yields : signal of a phase of massless particles? (2000)
- The yields of strange particles are calculated with the UrQMD model for p,Pb(158 AGeV)Pb collisions and compared to experimental data. The yields are enhanced in central collisions if compared to proton induced or peripheral Pb+Pb collisions. The enhancement is due to secondary interactions. Nevertheless, only a reduction of the quark masses or equivalently an increase of the string tension provides an adequate description of the large observed enhancement factors (WA97 and NA49). Furthermore, the yields of unstable strange resonances as the Lambda star(1520) resonance or the phi meson are considerably affected by hadronic rescattering of the decay products.