Refine
Year of publication
Document Type
- Article (25)
- Conference Proceeding (2)
- Doctoral Thesis (1)
Keywords
- BMC (2)
- Bone defect (2)
- Cell therapy (2)
- induced membrane (2)
- 3D printed cell-free scaffold (1)
- Angiogenesis (1)
- Bone marrow mononuclear cells (1)
- Bone regeneration (1)
- Cytokines (1)
- Developmental biology (1)
Institute
- Biofabrication of SDF-1 functionalized 3D-printed cell-free scaffolds for bone tissue regeneration (2020)
- Large segmental bone defects occurring after trauma, bone tumors, infections or revision surgeries are a challenge for surgeons. The aim of our study was to develop a new biomaterial utilizing simple and cheap 3D-printing techniques. A porous polylactide (PLA) cylinder was printed and functionalized with stromal-derived factor 1 (SDF-1) or bone morphogenetic protein 7 (BMP-7) immobilized in collagen type I. Biomechanical testing proved biomechanical stability and the scaffolds were implanted into a 6 mm critical size defect in rat femur. Bone growth was observed via x-ray and after 8 weeks, bone regeneration was analyzed with µCT and histological staining methods. Development of non-unions was detected in the control group with no implant. Implantation of PLA cylinder alone resulted in a slight but not significant osteoconductive effect, which was more pronounced in the group where the PLA cylinder was loaded with collagen type I. Addition of SDF-1 resulted in an osteoinductive effect, with stronger new bone formation. BMP-7 treatment showed the most distinct effect on bone regeneration. However, histological analyses revealed that newly formed bone in the BMP-7 group displayed a holey structure. Our results confirm the osteoinductive character of this 3D-biofabricated cell-free new biomaterial and raise new options for its application in bone tissue regeneration.
- Size matters: Effect of granule size of the bone graft substitute (Herafill®) on bone healing using Masquelet's induced membrane in a critical size defect model in the rat's femur (2019)
- The Masquelet technique for the treatment of large bone defects is a two‐stage procedure based on an induced membrane. The size of a scaffold is reported to be a critical factor for bone healing response. We therefore aimed to investigate the influence of the granule size of a bone graft substitute on bone marrow derived mononuclear cells (BMC) supported bone healing in combination with the induced membrane. We compared three different sizes of Herafill® granules (Heraeus Medical GmbH, Wehrheim) with or without BMC in vivo in a rat femoral critical size defect. A 10 mm defect was made in 126 rats and a membrane induced by a PMMA‐spacer. After 3 weeks, the spacer was taken out and membrane filled with different granule sizes. After 8 weeks femurs were taken for radiological, biomechanical, histological, and immunohistochemical analysis. Further, whole blood of the rat was incubated with granules and expression of 29 peptide mediators was assessed. Smallest granules showed significantly improved bone healing compared to larger granules, which however did not lead to an increased biomechanical stability in the defect zone. Small granules lead to an increased accumulation of macrophages in situ which could be assigned to the inflammatory subtype M1 by majority. Increased release of chemotactic respectively proangiogenic active factors in vitro compared to syngenic bone and beta‐TCP was observed. Granule size of the bone graft substitute Herafill® has significant impact on bone healing of a critical size defect in combination with Masquelet's technique in terms of bone formation and inflammatory.
- Introduction of a new surgical method to improve bone healing in a large bone defect by replacement of the induced membrane by a human decellularized dermis repopulated with bone marrow mononuclear cells in rat (2020)
- The Masquelet technique for the treatment of large bone defects is a two-stage procedure based on an induced membrane. We eliminate the first surgical step by using a decellularized dermal skin graft (Epiflex®) populated with bone marrow mononuclear cells (BMC), as a replacement for the induced membrane. The aim of this study was to demonstrate the feasibility of this technology and provide evidence of equivalent bone healing in comparison to the induced membrane-technique. Therefore, 112 male Sprague–Dawley rats were allocated in six groups and received a 10 mm femoral defect. Defects were treated with either the induced membrane or decellularized dermis, with or without the addition of BMC. Defects were then filled with a scaffold (β-TCP), with or without BMC. After a healing time of eight weeks, femurs were taken for histological, radiological and biomechanical analysis. Defects treated with Epiflex® showed increased mineralization and bone formation predominantly in the transplanted dermis surrounding the defect. No significant decrease of biomechanical properties was found. Vascularization of the defect could be enhanced by addition of BMC. Considering the dramatic reduction of a patient’s burden by the reduced surgical stress and shortened time of treatment, this technique could have a great impact on clinical practice.
- Effects of electrical stimulation on rat limb regeneration, a new look at an old model (2015)
- Limb loss is a devastating disability and while current treatments provide aesthetic and functional restoration, they are associated with complications and risks. The optimal solution would be to harness the body's regenerative capabilities to regrow new limbs. Several methods have been tried to regrow limbs in mammals, but none have succeeded. One such attempt, in the early 1970s, used electrical stimulation and demonstrated partial limb regeneration. Several researchers reproduced these findings, applying low voltage DC electrical stimulation to the stumps of amputated rat forelimbs reporting "blastema, and new bone, bone marrow, cartilage, nerve, skin, muscle and epiphyseal plate formation". In spite of these encouraging results this research was discontinued. Recently there has been renewed interest in studying electrical stimulation, primarily at a cellular and subcellular level, and studies have demonstrated changes in stem cell behavior with increased proliferation, differentiation, matrix formation and migration, all important in tissue regeneration. We applied electrical stimulation, in vivo, to the stumps of amputated rat limbs and observed significant new bone, cartilage and vessel formation and prevention of neuroma formation. These findings demonstrate that electricity stimulates tissue regeneration and form the basis for further research leading to possible new treatments for regenerating limbs.
- Chronic ethanol feeding modulates inflammatory mediators, activation of nuclear factor-κB, and responsiveness to endotoxin in murine Kupffer cells and circulating leukocytes (2014)
- Chronic ethanol abuse is known to increase susceptibility to infections after injury, in part, by modification of macrophage function. Several intracellular signalling mechanisms are involved in the initiation of inflammatory responses, including the nuclear factor-κB (NF-κB) pathway. In this study, we investigated the systemic and hepatic effect of chronic ethanol feeding on in vivo activation of NF-κB in NF-κB(EGFP) reporter gene mice. Specifically, the study focused on Kupffer cell proinflammatory cytokines IL-6 and TNF-α and activation of NF-κB after chronic ethanol feeding followed by in vitro stimulation with lipopolysaccharide (LPS). We found that chronic ethanol upregulated NF-κB activation and increased hepatic and systemic proinflammatory cytokine levels. Similarly, LPS-stimulated IL-1 β release from whole blood was significantly enhanced in ethanol-fed mice. However, LPS significantly increased IL-6 and TNF-α levels. These results demonstrate that chronic ethanol feeding can improve the responsiveness of macrophage LPS-stimulated IL-6 and TNF-α production and indicate that this effect may result from ethanol-induced alterations in intracellular signalling through NF-κB. Furthermore, LPS and TNF-α stimulated the gene expression of different inflammatory mediators, in part, in a NF-κB-dependent manner.
- The effect of in vitro electrolytic cleaning on biofilm-contaminated implant surfaces (2019)
- Purpose: Bacterial biofilms are a major problem in the treatment of infected dental and orthopedic implants. The purpose of this study is to investigate the cleaning effect of an electrolytic approach (EC) compared to a powder-spray system (PSS) on titanium surfaces. Materials and Methods: The tested implants (different surfaces and alloys) were collated into six groups and treated ether with EC or PSS. After a mature biofilm was established, the implants were treated, immersed in a nutritional solution, and streaked on Columbia agar. Colony-forming units (CFUs) were counted after breeding and testing (EC), and control (PSS) groups were compared using a paired sample t-test. Results: No bacterial growth was observed in the EC groups. After thinning to 1:1,000,000, 258.1 ± 19.9 (group 2), 264.4 ± 36.5 (group 4), and 245.3 ± 40.7 (group 6) CFUs could be counted in the PSS groups. The difference between the electrolytic approach (test groups 1, 3, and 5) and PSS (control groups 2, 4, and 6) was statistically extremely significant (p-value < 2.2 × 10−16). Conclusion: Only EC inactivated the bacterial biofilm, and PSS left reproducible bacteria behind. Within the limits of this in vitro test, clinical relevance could be demonstrated.
- Acute ethanol gavage attenuates hemorrhage/resuscitation-induced hepatic oxidative stress in rats (2012)
- Acute ethanol intoxication increases the production of reactive oxygen species (ROS). Hemorrhagic shock with subsequent resuscitation (H/R) also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.). Then, rats were hemorrhaged to a mean arterial blood pressure of 30 ± 2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.). Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE) and nitrosative (3-nitrotyrosine, 3-NT) stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.
- Severe traumatic brain injury (TBI) modulates the kinetic profile of the inflammatory response of markers for neuronal damage (2020)
- The inflammatory response plays an important role in the pathophysiology of multiple injuries. This study examines the effects of severe trauma and inflammatory response on markers of neuronal damage. A retrospective analysis of prospectively collected data in 445 trauma patients (Injury Severity Score (ISS) ≥ 16) is provided. Levels of neuronal biomarkers (calcium-binding Protein B (S100b), Enolase2 (NSE), glial fibrillary acidic protein (GFAP)) and Interleukins (IL-6, IL-10) in severely injured patients (with polytrauma (PT)) without traumatic brain injury (TBI) or with severe TBI (PT+TBI) and patients with isolated TBI (isTBI) were measured upon arrival until day 5. S100b, NSE, GFAP levels showed a time-dependent decrease in all cohorts. Their expression was higher after multiple injuries (p = 0.038) comparing isTBI. Positive correlation of marker level after concomitant TBI and isTBI (p = 0.001) was noted, while marker expression after PT appears to be independent. Highest levels of IL-6 and -10 were associated to PT und lowest to isTBI (p < 0.001). In all groups pro-inflammatory response (IL-6/-10 ratio) peaked on day 2 and at a lower level on day 4. Severe TBI modulates kinetic profile of inflammatory response by reducing interleukin expression following trauma. Potential markers for neuronal damage have a limited diagnostic value after severe trauma because undifferentiated increase.
- miR-142-3p expression is predictive for severe traumatic brain injury (TBI) in trauma patients (2020)
- Background: Predictive biomarkers in biofluids are the most commonly used diagnostic method, but established markers in trauma diagnostics lack accuracy. This study investigates promisingmicroRNAs(miRNA)releasedfromaffectedtissueafterseveretraumathathavepredictive values for the effects of the injury. Methods: A retrospective analysis of prospectively collected data and blood samples of n = 33 trauma patients (ISS≥16) is provided. Levels of miR-9-5p, -124-3p, -142-3p, -219a-5p, -338-3pand-423-3p inseverelyinjuredpatients (PT)withouttraumatic braininjury (TBI) or with severe TBI (PT + TBI) and patients with isolated TBI (isTBI) were measured within 6 h after trauma. Results: The highest miR-423-3p expression was detected in patients with severe isTBI, followed by patients with PT + TBI, and lowest levels were found in PT patients without TBI (2−∆∆Ct,p = 0.009). ApositivecorrelationbetweenmiR-423-3plevelandincreasingAIShead (p = 0.001) and risk of mortality (RISC II, p = 0.062) in trauma patients (n = 33) was found. ROC analysis of miR-423-3p levels revealed them as statistically significant to predict the severity of brain injury in trauma patients (p = 0.006). miR-124-3p was only found in patients with severe TBI, miR-338-3p was shown in all trauma groups. miR-9-5p, miR-142-3p and miR-219a-5p could not be detected in any of the four groups. Conclusion: miR-423-3p expression is significantly elevated after isolated traumatic braininjuryandpredictableforsevereTBIinthefirsthoursaftertrauma. miR-423-3pcouldrepresent a promising new biomarker to identify severe isolated TBI.
- Beschleunigte Knochenheilung durch frühe Vaskularisierung mittels Implantation von EPC und MSC auf beta-TCP im Knochendefektmodell der Ratte (2009)
- Fragestellung: In einem ausgedehnten Knochendefekt kann das Einwachsen von knochenbildenden Zellen limitiert sein, da ohne Gefässe die Ernährung der regenerativen Zellen im Knochenkonstrukt insuffizient ist. Endotheliale Progenitorzellen (EPC) sind wichtig bei der Neovaskularisierung. Die frühe Vaskularisierung von grossen Knochendefekten kann für das Überleben und die Funktion von mesenchymalen Stammzellen (MSC) und knochenbildenden Zellen entscheidend sein. Kann die Implantation von EPC und MSC auf osteokonduktiven beta-Tricalciumphosphat (beta-TCP) in einem "critical-size" Knochendefekt des Femur von athymischen Ratten die frühe Vaskularisierung und die Knochenheilung in vivo verbessern? Methodik: Humane EPC wurden aus Buffy-Coat und humane MSC aus Knochenmarkaspirat durch Dichtezentrifugation isoliert. 2.5 x 105 kultivierte und differenzierte EPC und MSC wurden in vitro auf beta-TCP geladen. In 145 athymischen, männlichen Ratten wurde das Femur osteotomiert, ein 5 mm Knochendefekt erzeugt und mit Fixateur externe stabilisiert. Die Knochendefekte wurden mit beta-TCP (Gruppe 1), beta-TCP und MSC (Gruppe 2), beta-TCP und EPC (Gruppe 3), beta-TCP und EPC und MSC (Gruppe 4) oder autologem Knochen (Gruppe 5) gefüllt. Nach 1 Woche (n=40), 4 Wochen (n=40), 8 Wochen (n=40) und 12 Wochen (n=25) wurden die Ratten getötet. Bei Pinlockerung wurde die Ratte ausgeschlossen. Die (immun)histologische Analyse (Färbung mit HE, VEGF-R2, vWF) der Vaskularisierung und Knochenneubildung erfolgte mit Image-Analysis-System. Nach 8 und 12 Wochen erfolgte ein µCT und ein 4-Punkte-Biegungstest. Für die statistische Analyse wurde der Kruskal-Wallis-Test verwendet. Ergebnisse und Schlussfolgerungen: Nach 1 Woche zeigte sich bei der Implantation von EPC/MSC und EPC allein signifikant mehr primitive vaskuläre Plexus (p=0.01;p=0.048) als in Vergleichsgruppen. Im Vergleich zur TCP Gruppe war in allen anderen Versuchsgruppen signifikant mehr Knochenneubildung zu sehen (p<0.01). Ausserdem war in der EPC/MSC-Gruppe signifikant mehr Knochenbildung zu erkennen als in der MSC-Gruppe (p=0.03). Nach 12 Wochen zeigten alle Gruppen eine knöcherne Durchbauung des Defektes, jedoch zeigten bereits 8 Wochen nach Implantation von MSC/EPC 83% der Defekte eine stabile, knöcherne Durchbauung. Bei der Implantation von MSC kam es in 18% der Knochendefekte zum knöchernen Durchbau. Alle anderen experimentellen Gruppen zeigten nach 8 Wochen keine knöcherne Durchbauung. Diese Resultate konnten im µCT, biomechanischen Test und in der Histologie quantifiziert werden. EPC scheinen die frühe Vaskularisierung innerhalb eines Knochenkonstrukt in vivo zu stimulieren und das Einwachsverhalten von MSC zu verbessern, was zu einer beschleunigten Knochenheilung im Knochendefektmodell der Ratte führt.