Refine
Year of publication
- 2021 (2) (remove)
Keywords
- BMNC (1)
- Interleukin-10 (1)
- Interleukin-6 (1)
- critical-size defect (1)
- inflammation (1)
- polytrauma (1)
- severely injured patient (1)
- tissue engineering (1)
- traumatic brain injury (1)
- Influence of antibiotic management on microbial selection and infectious complications after trauma (2021)
- Background: The inflammatory response and post-traumatic complications like infections play an important role in the pathophysiology of severe injuries. This study examines the microbiological aspects in anti-infective treatment of trauma patients and their inflammatory response in post-traumatic infections complications. Patients and Methods: A retrospective analysis of prospectively collected data in trauma patients (ISS ≥ 16) over a 1-year period (01/2018 to 12/2018) is provided. Patient population was stratified into severely injured patients without post-traumatic infection (inf-PT), and severely injured patients who developed an infection (inf+PT).Results: Of 114 trauma patients, 45 suffered from post-traumatic infection during the first 10 days of hospitalization. Severely injured patients with concomitant traumatic brain injury (PT+TBI) showed the highest rate of post-traumatic infection. Pro-inflammatory reaction was tracked by levels of Interleukin (IL-)6 (day 3: inf+T 190.8 ± 359.4 pg/dL > inf-PT 56.2 ± 57.7 pg/mL (mean ± SD); p = 0.008) and C-Reactive-Protein (CRP, day 3: inf+PT 15.3 mg/dL > inf-PT 6.7 mg/dL, p = 0.001) which were significantly higher in trauma patients who develop an infectious complication and showed a significant positive correlation with the occurrence of infection. The leading entity of infection was pneumonia followed by infections of the urinary tract mainly caused by gram-negative Enterobacteriaceae. 67.5% of all trauma patients received single-shot antibiosis during initial care in trauma bay. The development of secondary colonization was not relevant positively correlated with single-shot antibiosis (r = 0.013, p = 0.895) and prophylactically calculated antibiotic administration (r = 0.066, p = 0.500).Conclusion: Severely injured trauma patients have an increased risk for development of infectious complications, which mainly is pneumonia followed by infection of the urinary tract mainly caused by gram-negative Enterobacteriaceae. Based on the data in this study, the one-time antibiotic and prophylactic calculated use of antibiotics, like Cephalosporins must be critically discussed in terms of their role in the development of post-traumatic infections and microbial selection.
- Fibrous demineralized bone matrix (DBM) improves bone marrow mononuclear cell (BMC)-supported bone healing in large femoral bone defects in rats (2021)
- Regeneration of large bone defects is a major objective in trauma surgery. Bone marrow mononuclear cell (BMC)-supported bone healing was shown to be efficient after immobilization on a scaffold. We hypothesized that fibrous demineralized bone matrix (DBM) in various forms with BMCs is superior to granular DBM. A total of 65 male SD rats were assigned to five treatment groups: syngenic cancellous bone (SCB), fibrous demineralized bone matrix (f-DBM), fibrous demineralized bone matrix densely packed (f-DBM 120%), DBM granules (GDBM) and DBM granules 5% calcium phosphate (GDBM5%Ca2+). BMCs from donor rats were combined with different scaffolds and placed into 5 mm femoral bone defects. After 8 weeks, bone mineral density (BMD), biomechanical stability and histology were assessed. Similar biomechanical properties of f-DBM and SCB defects were observed. Similar bone and cartilage formation was found in all groups, but a significantly bigger residual defect size was found in GDBM. High bone healing scores were found in f-DBM (25) and SCB (25). The application of DBM in fiber form combined with the application of BMCs shows promising results comparable to the gold standard, syngenic cancellous bone. Denser packing of fibers or higher amount of calcium phosphate has no positive effect.