Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Keywords
- glioblastoma (2)
- CPE (1)
- LC3B (1)
- SAP (1)
- Spectral library (1)
- apoptosis (1)
- astrocytoma (1)
- autophagy (1)
- mTOR (1)
- metabolism (1)
Institute
- Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas (2016)
- Recently, the conserved intracellular digestion mechanism ‘autophagy’ has been considered to be involved in early tumorigenesis and its blockade proposed as an alternative treatment approach. However, there is an ongoing debate about whether blocking autophagy has positive or negative effects in tumor cells. Since there is only poor data about the clinico-pathological relevance of autophagy in gliomas in vivo, we first established a cell culture based platform for the in vivo detection of the autophago-lysosomal components. We then investigated key autophagosomal (LC3B, p62, BAG3, Beclin1) and lysosomal (CTSB, LAMP2) molecules in 350 gliomas using immunohistochemistry, immunofluorescence, immunoblotting and qPCR. Autophagy was induced pharmacologically or by altering oxygen and nutrient levels. Our results show that autophagy is enhanced in astrocytomas as compared to normal CNS tissue, but largely independent from the WHO grade and patient survival. A strong upregulation of LC3B, p62, LAMP2 and CTSB was detected in perinecrotic areas in glioblastomas suggesting micro-environmental changes as a driver of autophagy induction in gliomas. Furthermore, glucose restriction induced autophagy in a concentration-dependent manner while hypoxia or amino acid starvation had considerably lesser effects. Apoptosis and autophagy were separately induced in glioma cells both in vitro and in vivo. In conclusion, our findings indicate that autophagy in gliomas is rather driven by micro-environmental changes than by primary glioma-intrinsic features thus challenging the concept of exploitation of the autophago-lysosomal network (ALN) as a treatment approach in gliomas.
- Immunohistochemical assessment of phosphorylated mTORC1-pathway proteins in human brain tumors (2015)
- Background: Current pathological diagnostics include the analysis of (epi-)genetic alterations as well as oncogenic pathways. Deregulated mammalian target of rapamycin complex 1 (mTORC1) signaling has been implicated in a variety of cancers including malignant gliomas and is considered a promising target in cancer treatment. Monitoring of mTORC1 activity before and during inhibitor therapy is essential. The aim of our study is to provide a recommendation and report on pitfalls in the use of phospho-specific antibodies against mTORC1-targets phospho-RPS6 (Ser235/236; Ser240/244) and phospho-4EBP1 (Thr37/46) in formalin fixed, paraffin embedded material. Methods and findings: Primary, established cell lines and brain tumor tissue from routine diagnostics were assessed by immunocyto-, immunohistochemistry, immunofluorescent stainings and immunoblotting. For validation of results, immunoblotting experiments were performed. mTORC-pathway activation was pharmacologically inhibited by torin2 and rapamycin. Torin2 treatment led to a strong reduction of signal intensity and frequency of all tested antibodies. In contrast phospho-4EBP1 did not show considerable reduction in staining intensity after rapamycin treatment, while immunocytochemistry with both phospho-RPS6-specific antibodies showed a reduced signal compared to controls. Staining intensity of both phospho-RPS6-specific antibodies did not show considerable decrease in stability in a timeline from 0–230 minutes without tissue fixation, however we observed a strong decrease of staining intensity in phospho-4EBP1 after 30 minutes. Detection of phospho-signals was strongly dependent on tissue size and fixation gradient. mTORC1-signaling was significantly induced in glioblastomas although not restricted to cancer cells but also detectable in non-neoplastic cells. Conclusion: Here we provide a recommendation for phospho-specific immunohistochemistry for patient-orientated therapy decisions and monitoring treatment response.
- Effects of soluble CPE on glioma cell migration are associated with mTOR activation and enhanced glucose flux (2017)
- Carboxypeptidase E (CPE) has recently been described as a multifunctional protein that regulates proliferation, migration and survival in several tumor entities. In glioblastoma (GBM), the most malignant primary brain tumor, secreted CPE (sCPE) was shown to modulate tumor cell migration. In our current study, we aimed at clarifying the underlying molecular mechanisms regulating anti-migratory as well as novel metabolic effects of sCPE in GBM. Here we show that sCPE activates mTORC1 signaling in glioma cells detectable by phosphorylation of its downstream target RPS6. Additionally, sCPE diminishes glioma cell migration associated with a negative regulation of Rac1 signaling via RPS6, since both inhibition of mTOR and stimulation of Rac1 results in a reversed effect of sCPE on migration. Knockdown of CPE leads to a decrease of active RPS6 associated with increased GBM cell motility. Apart from this, we show that sCPE enhances glucose flux into the tricarboxylic acid cycle at the expense of lactate production, thereby decreasing aerobic glycolysis, which might as well contribute to a less invasive behavior of tumor cells. Our data contributes to a better understanding of the complexity of GBM cell migration and sheds new light on how tumor cell invasion and metabolic plasticity are interconnected.
- Large scale analysis of amino acid substitutions in bacterial proteomics (2016)
- Background: Proteomics of bacterial pathogens is a developing field exploring microbial physiology, gene expression and the complex interactions between bacteria and their hosts. One of the complications in proteomic approach is micro- and macro-heterogeneity of bacterial species, which makes it impossible to build a comprehensive database of bacterial genomes for identification, while most of the existing algorithms rely largely on genomic data. Results: Here we present a large scale study of identification of single amino acid polymorphisms between bacterial strains. An ad hoc method was developed based on MS/MS spectra comparison without the support of a genomic database. Whole-genome sequencing was used to validate the accuracy of polymorphism detection. Several approaches presented earlier to the proteomics community as useful for polymorphism detection were tested on isolates of Helicobacter pylori, Neisseria gonorrhoeae and Escherichia coli. Conclusion: The developed method represents a perspective approach in the field of bacterial proteomics allowing to identify hundreds of peptides with novel SAPs from a single proteome.
- Functional analysis of soluble Carboxypeptidase E in Glioblastoma (2017)
- In dieser Dissertation wurde die Rolle des Proteins Carboxypeptidase E (CPE) im Glioblastom (GBM) untersucht. Ursprünglich wurde CPE in der neuroendokrinen Regulation beschrieben, wo es die Reifung der meisten Neuropeptide und Hormone reguliert und somit Einfluss auf Stoffwechsel und humorale Effekte hat (Fricker et al., 1982; Fricker & Snyder, 1982 and 1983; Davidson & Hutton, 1987; Shen & Loh, 1997; Lou et al., 2005). Ab 1989 wurde CPE in unterschiedlichen Tumorentitäten nachgewiesen (Grimwood et al., 1989; Manser et al., 1991), jedoch ohne Hinweise, welche Bedeutung das Protein dort haben könnte. Erst im letzten Jahrzehnt konnten sowohl pro- als auch anti-tumorigene Wirkungen von CPE gezeigt werden. Die beschriebenen Wirkungen von CPE sind jedoch von dessen Isoform abhängig. Das ∂(delta)N-trunkierte CPE zeigte sich mit erhöhtem Tumorwachstum und schlechter Überlebensprognose in verschiedenen Krebsentitäten assoziiert (Murthy et al., 2010; Lee et al., 2011; Zhou et al., 2013). Im Gegensatz dazu verringerte sezerniertes CPE (sCPE) im Fibrosarkom und Glioblastom die Zellmigration, was einen anti-tumorigenen Effekt suggeriert (Höring et al., 2012; Murthy et al., 2013a). Die Molekularmechanismen, die für die Regulation der Migration zuständig sind, sind jedoch kaum untersucht. Die meisten Untersuchungen von sCPE in Normal- und Tumorgewebe beschränken sich hauptsächlich auf Apoptose und Zellüberleben (Skalka et al., 2013; Murthy et al., 2013b; Cheng et al., 2013; Selvaraj et al., 2015; Cheng et al., 2015). Die vorliegende Arbeit ist demzufolge die erste Studie, die sich dem Mechanismus der Migrationsregulation durch sCPE im Glioblastom widmet. Humane Gliome stellen die größte und bösartigste Gruppe hirneigener Tumore dar. Bösartige Gliome sind höchst resistent gegen alle zurzeit verfügbaren Behandlungsmethoden. Einer der Hauptgründe dafür ist, dass die Tumorzellen durch diffuse Infiltration in das Gehirn einwandern können. Ferner sind Gliomzellen metabolisch sehr aktiv und können sich dadurch an schnell verändertes Milieu anpassen (Fack et al., 2015; Demeure et al., 2016). Über die grundlegenden Mechanismen für diese Art des infiltrierenden Tumorwachstums ist bisher noch nicht viel bekannt. Zurzeit sind nur wenige Schlüsselfaktoren beschrieben, die den sogenannten Mechanismus der Migration oder Proliferation ("go or grow") in bösartigen Tumoren beeinflussen: wenige Transkriptionsfaktoren, miRNAs sowie metabolische Faktoren. Interessanterweise, sind miRNAs zum Teil mit der Regulation des Metabolismus in Tumorzellen assoziiert. Eine vorangehende Studie aus unserem Labor hat sCPE aufgrund seines Potentials, Zellwanderung zu verringern, als einen weiteren Schlüsselfaktor identifiziert. Wir konnten zeigen, dass sCPE in der Gliomzelllinie LNT-229 zur einer differentiellen Regulation von Migration und Proliferation führt (Höring et al., 2012). Die vorliegende Arbeit widmet sich nun der Frage nach den genauen zugrundeliegenden Mechanismen, wie sCPE seine Effekte auf molekularer Ebene vermittelt. Darüber hinaus soll geklärt werden, ob sCPE auch in der metabolischen Adaptation eine Rolle spielt und dadurch ebenfalls die Gliomzellmigration beeinflußen kann.