### Refine

#### Keywords

- awake monkey recordings (1)
- effective connectivity (1)
- generalized linear models (1)
- network topology (1)
- random sampling (1)
- scale-free networks (1)
- small-world networks (1)
- visual system (1)

- Extraction of network topology from multi-electrode recordings: is there a small-world effect? (2011)
- The simultaneous recording of the activity of many neurons poses challenges for multivariate data analysis. Here, we propose a general scheme of reconstruction of the functional network from spike train recordings. Effective, causal interactions are estimated by fitting generalized linear models on the neural responses, incorporating effects of the neurons’ self-history, of input from other neurons in the recorded network and of modulation by an external stimulus. The coupling terms arising from synaptic input can be transformed by thresholding into a binary connectivity matrix which is directed. Each link between two neurons represents a causal influence from one neuron to the other, given the observation of all other neurons from the population. The resulting graph is analyzed with respect to small-world and scale-free properties using quantitative measures for directed networks. Such graph-theoretic analyses have been performed on many complex dynamic networks, including the connectivity structure between different brain areas. Only few studies have attempted to look at the structure of cortical neural networks on the level of individual neurons. Here, using multi-electrode recordings from the visual system of the awake monkey, we find that cortical networks lack scale-free behavior, but show a small, but significant small-world structure. Assuming a simple distance-dependent probabilistic wiring between neurons, we find that this connectivity structure can account for all of the networks’ observed small-world-ness. Moreover, for multi-electrode recordings the sampling of neurons is not uniform across the population. We show that the small-world-ness obtained by such a localized sub-sampling overestimates the strength of the true small-world structure of the network. This bias is likely to be present in all previous experiments based on multi-electrode recordings.

- Goodness-of-fit tests for neural population models: the multivariate time-rescaling theorem (2010)
- Poster Presentation from Nineteenth Annual Computational Neuroscience Meeting: CNS*2010 San Antonio, TX, USA. 24-30 July 2010 Statistical models of neural activity are at the core of the field of modern computational neuroscience. The activity of single neurons has been modeled to successfully explain dependencies of neural dynamics to its own spiking history, to external stimuli or other covariates [1]. Recently, there has been a growing interest in modeling spiking activity of a population of simultaneously recorded neurons to study the effects of correlations and functional connectivity on neural information processing (existing models include generalized linear models [2,3] or maximum-entropy approaches [4]). For point-process-based models of single neurons, the time-rescaling theorem has proven to be a useful toolbox to assess goodness-of-fit. In its univariate form, the time-rescaling theorem states that if the conditional intensity function of a point process is known, then its inter-spike intervals can be transformed or “rescaled” so that they are independent and exponentially distributed [5]. However, the theorem in its original form lacks sensitivity to detect even strong dependencies between neurons. Here, we present how the theorem can be extended to be applied to neural population models and we provide a step-by-step procedure to perform the statistical tests. We then apply both the univariate and multivariate tests to simplified toy models, but also to more complicated many-neuron models and to neuronal populations recorded in V1 of awake monkey during natural scenes stimulation. We demonstrate that important features of the population activity can only be detected using the multivariate extension of the test. ...