Refine
Year of publication
Document Type
- Article (25) (remove)
Keywords
- wassergefiltertes Infrarot A (wIRA) (15)
- water-filtered infrared-A (wIRA) (14)
- Gewebedurchblutung (13)
- Gewebetemperatur (13)
- Schmerzminderung (12)
- Wundheilung (12)
- reduction of pain (12)
- tissue blood flow (12)
- tissue oxygen partial pressure (12)
- tissue temperature (12)
Institute
- Sportwissenschaften (25) (remove)
- Wassergefiltertes Infrarot A (wIRA) hilft Wunden heilen (2014)
- Wassergefiltertes Infrarot A (wIRA) als spezielle Form der Wärmestrahlung mit hohem Eindringvermögen in das Gewebe bei geringer thermischer Oberflächenbelastung fördert die Heilung akuter und chronischer Wunden sowohl über thermische und temperaturabhängige als auch über nichtthermische und temperaturunabhängige Effekte. Wassergefiltertes Infrarot A steigert die Temperatur (+2,7°C in einer Gewebetiefe von 2 cm) und den Sauerstoffpartialdruck im Gewebe (+32% in einer Gewebetiefe von 2 cm) und die Gewebedurchblutung. Diese 3 Faktoren sind entscheidend für eine ausreichende Versorgung des Gewebes mit Energie und Sauerstoff und deshalb auch für Wundheilung und Infektionsabwehr. Wassergefiltertes Infrarot A hilft sowohl bei der normalen als auch bei der gestörten Wundheilung, indem es Entzündungsreaktionen und erhöhte Wundsekretion mindert, Infektionsabwehr und Regeneration fördert und Wundschmerzen lindern helfen kann. Die genannten Effekte wurden in insgesamt 7 prospektiven Studien (davon 6 randomisierten kontrollierten Studien) belegt, die meisten mit einem Evidenzgrad von Ia bzw. Ib. Die hier zusätzlich dargestellten Fallbeispiele komplizierter Wundheilungsverläufe illustrieren die belegten Wirkungen von wIRA. Nicht nur in den hier gezeigten 6 Fällen wendeten die Bestrahlungen mit wIRA komplizierte Wundheilungsverläufe zum Besseren und ermöglichten nach ganz unterschiedlich langen Gesamtdauern der Bestrahlungen (in den 6 Fällen: von 51–550 h) und nach verschieden langen Gesamtdauern der Wundpflege, meist nach Transplantation von Spalthautgittern, die Heilung der Wunden. Bei komplizierten Wundheilungsverläufen ersetzt wIRA nicht den Rat und ggf. auch die Behandlung eines erfahrenen plastischen Chirurgen und eines Chirurgen mit der Spezialisierung in septischer Chirurgie. Mit dieser Einschränkung kann wIRA als wertvolle Ergänzung der Behandlung von akuten und chronischen Wunden empfohlen werden.
- Water-filtered infrared-A (wIRA) can act as a penetration enhancer for topically applied substances (2008)
- Background: Water-filtered infrared-A (wIRA) irradiation has been shown to enhance penetration of clinically used topically applied substances in humans through investigation of functional effects of penetrated substances like vasoconstriction by cortisone. Aim of the study: Investigation of the influence of wIRA irradiation on the dermatopharmacokinetics of topically applied substances by use of optical methods, especially to localize penetrating substances, in a prospective randomised controlled study in humans. Methods: The penetration profiles of the hydrophilic dye fluorescein and the lipophilic dye curcumin in separate standard water-in-oil emulsions were determined on the inner forearm of test persons by tape stripping in combination with spectroscopic measurements. Additionally, the penetration was investigated in vivo by laser scanning microscopy. Transepidermal water loss, hydration of the epidermis, and surface temperature were determined. Three different procedures (modes A, B, C) were used in a randomised order on three separate days of investigation in each of 12 test persons. In mode A, the two dyes were applied on different skin areas without water-filtered infrared-A (wIRA) irradiation. In mode B, the skin surface was irradiated with wIRA over 30 min before application of the two dyes (Hydrosun® radiator type 501, 10 mm water cuvette, orange filter OG590, water-filtered spectrum: 590–1400 nm with dominant amount of wIRA). In mode C, the two dyes were applied and immediately afterwards the skin was irradiated with wIRA over 30 min. In all modes, tape stripping started 30 min after application of the formulations. Main variable of interest was the ratio of the amount of the dye in the deeper (second) 10% of the stratum corneum to the amount of the dye in the upper 10% of the stratum corneum. Results: The penetration profiles of the hydrophilic fluorescein showed in case of pretreatment or treatment with wIRA (modes B and C) an increased penetration depth compared to the non-irradiated skin (mode A): The ratio of the amount of the dye in the deeper (second) 10% of the stratum corneum to the amount of the dye in the upper 10% of the stratum corneum showed medians and interquartile ranges for mode A of 0.017 (0.007/0.050), for mode B of 0.084 (0.021/0.106), for mode C of 0.104 (0.069/0.192) (difference between modes: p=0.0112, significant; comparison mode A with mode C: p<0.01, significant). In contrast to fluorescein, the lipophilic curcumin showed no differences in the penetration kinetics, in reference to whether the skin was irradiated with wIRA or not. These effects were confirmed by laser scanning microscopy. Water-filtered infrared-A irradiation increased the hydration of the stratum corneum: transepidermal water loss rose from approximately 8.8 g m-2 h-1 before wIRA irradiation to 14.2 g m-2 h-1 after wIRA irradiation and skin hydration rose from 67 to 87 relative units. Skin surface temperature increased from 32.8°C before wIRA to 36.4°C after wIRA irradiation. Discussion: The better penetration of the hydrophilic dye fluorescein after or during skin irradiation (modes B and C) can be explained by increased hydration of the stratum corneum by irradiation with wIRA. Conclusions: As most topically applied substances for the treatment of patients are mainly hydrophilic, wIRA can be used to improve the penetration of substances before or after application of substances – in the first case even of thermolabile substances – with a broad clinical relevance as a contact free alternative to an occlusive dressing.
- Influence of water-filtered infrared-A (wIRA) on reduction of local fat and body weight by physical exercise (2006)
- Aim of the study: Investigation, whether water-filtered infrared-A (wIRA) irradiation during moderate bicycle ergometer endurance exercise has effects especially on local fat reduction and on weight reduction beyond the effects of ergometer exercise alone. Methods: Randomised controlled study with 40 obese females (BMI 30-40 (median: 34.5), body weight 76-125 (median: 94.9) kg, age 20-40 (median: 35.5) years, isocaloric nutrition), 20 in the wIRA group and 20 in the control group. In both groups each participant performed 3 times per week over 4 weeks for 45 minutes bicycle ergometer endurance exercise with a constant load according to a lactate level of 2 mmol/l (aerobic endurance load, as determined before the intervention period). In the wIRA group in addition large parts of the body (including waist, hip, and thighs) were irradiated during all ergometries of the intervention period with visible light and a predominant part of water-filtered infrared-A (wIRA), using the irradiation unit “Hydrosun® 6000” with 10 wIRA radiators (Hydrosun® Medizintechnik, Müllheim, Germany, radiator type 500, 4 mm water cuvette, yellow filter, water-filtered spectrum 500-1400 nm) around a speed independent bicycle ergometer. Main variable of interest: change of “the sum of circumferences of waist, hip, and both thighs of each patient” over the intervention period (4 weeks). Additional variables of interest: body weight, body mass index BMI, body fat percentage, fat mass, fat-free mass, water mass (analysis of body composition by tetrapolar bioimpedance analysis), assessment of an arteriosclerotic risk profile by blood investigation of variables of lipid metabolism (cholesterol, triglycerides, high density lipoproteins HDL, low density lipoproteins LDL, apolipoprotein A1, apolipoprotein B), clinical chemistry (fasting glucose, alanin-aminotransferase ALT (= glutamyl pyruvic transaminase GPT), gamma-glutamyl-transferase GGT, creatinine, albumin), endocrinology (leptin, adiponectin (= adipo Q), homocysteine, insulin). All variables were at least measured before and after the intervention period. Ergometry (ECG, blood pressure behaviour, lactate curve with power at 2, 3 and 4 mmol/l) before the intervention period. In addition: nutrition training ahead of and during the intervention period with a nutrition protocol over one week for assessment of the daily energy intake; calculation of basic metabolic rate and total energy requirement. Assessment of undesired effects. Only methods of non-parametric statistics were used, both descriptive (median, percentiles of 25 and 75 (= interquartile range), minimum, maximum) and confirmatory (two-sided Mann-Whitney U test for unpaired samples for the only one main variable of interest). Total error probability: .05 (5%). An intention to treat analysis ITT with last observed carry forward method was used preferably (presented results) and in addition an on treatment analysis OT. Only 2 (treatment group) and 4 (control group) drop-outs occurred (mostly due to lack of time). Results: The “sum of circumferences of waist, hip, and both thighs of each patient” decreased during the 4 weeks significantly more (p<.001) in the wIRA group than in the control group: medians and interquartile ranges: -8.0 cm (-10.5 cm/-4.1 cm) vs. -1.8 cm (-4.4 cm/0.0 cm). As well “body weight of each patient” decreased during the 4 weeks markedly more in the wIRA group than in the control group: medians and interquartile ranges: -1.9 kg (-4.0 kg/0.0 kg) vs. 0.0 kg (-1.5 kg/+0.4 kg); median of body weight changed from 99.3 kg to 95.6 kg (wIRA) vs. 89.9 kg to 89.6 kg (control). A similar effect showed the body mass index BMI. Blood variables of interest remained unchanged or showed some slight improvements during the treatment period, concerning most variables with no obvious differences between the two groups; insulin showed a slight trend to decrease in the wIRA group and to increase in the control group. Undesired effects of the treatment were not seen. Discussion: The results of the study suggest, that wIRA – during moderate bicycle ergometer endurance exercise as lipolytic stimulus – increases local lipolysis with a local fat reduction (thighs) in the otherwise bradytrophic fatty tissue. The presumably underlying mechanisms of wIRA have already been proven: wIRA acts both by thermal effects and by non-thermal effects. Thermal effects of wIRA are the generation of a therapeutic field of warmth with the increase of tissue temperature, tissue oxygen partial pressure, and tissue blood flow, and by this regional metabolism. As fatty tissue normally has a slow metabolism (bradytrophic and hypothermic tissue) with a low rate of lipolysis, wIRA can increase lipolysis in fatty tissue and the mobilized fats are burned in musculature during the ergometer exercise. Conclusion: The results of the study indicate, that wIRA irradiation during moderate ergometer endurance exercise can be used – in combination with an appropriate nutrition – to improve body composition, especially local fat distribution, and the reduction of fat and body weight in obese persons. Keywords: water-filtered infrared-A (wIRA), weight reduction, local fat reduction, bicycle ergometer endurance exercise, lipolysis, randomised controlled study, intervention trial, body weight, body mass index BMI, analysis of body composition, tetrapolar bioimpedance analysis, lactate, lipid metabolism, cholesterol, triglycerides, high density lipoproteins HDL, low density lipoproteins LDL
- Influence of water-filtered infrared-A (wIRA) on reduction of local fat and body weight by physical exercise (2006)
- Aim of the study: Investigation, whether water-filtered infrared-A (wIRA) irradiation during moderate bicycle ergometer endurance exercise has effects especially on local fat reduction and on weight reduction beyond the effects of ergometer exercise alone. Methods: Randomised controlled study with 40 obese females (BMI 30-40 (median: 34.5), body weight 76-125 (median: 94.9) kg, age 20-40 (median: 35.5) years, isocaloric nutrition), 20 in the wIRA group and 20 in the control group. In both groups each participant performed 3 times per week over 4 weeks for 45 minutes bicycle ergometer endurance exercise with a constant load according to a lactate level of 2 mmol/l (aerobic endurance load, as determined before the intervention period). In the wIRA group in addition large parts of the body (including waist, hip, and thighs) were irradiated during all ergometries of the intervention period with visible light and a predominant part of water-filtered infrared-A (wIRA), using the irradiation unit “Hydrosun® 6000” with 10 wIRA radiators (Hydrosun® Medizintechnik, Müllheim, Germany, radiator type 500, 4 mm water cuvette, yellow filter, water-filtered spectrum 500-1400 nm) around a speed independent bicycle ergometer. Main variable of interest: change of “the sum of circumferences of waist, hip, and both thighs of each patient” over the intervention period (4 weeks). Additional variables of interest: body weight, body mass index BMI, body fat percentage, fat mass, fat-free mass, water mass (analysis of body composition by tetrapolar bioimpedance analysis), assessment of an arteriosclerotic risk profile by blood investigation of variables of lipid metabolism (cholesterol, triglycerides, high density lipoproteins HDL, low density lipoproteins LDL, apolipoprotein A1, apolipoprotein B), clinical chemistry (fasting glucose, alanin-aminotransferase ALT (= glutamyl pyruvic transaminase GPT), gamma-glutamyl-transferase GGT, creatinine, albumin), endocrinology (leptin, adiponectin (= adipo Q), homocysteine, insulin). All variables were at least measured before and after the intervention period. Ergometry (ECG, blood pressure behaviour, lactate curve with power at 2, 3 and 4 mmol/l) before the intervention period. In addition: nutrition training ahead of and during the intervention period with a nutrition protocol over one week for assessment of the daily energy intake; calculation of basic metabolic rate and total energy requirement. Assessment of undesired effects. Only methods of non-parametric statistics were used, both descriptive (median, percentiles of 25 and 75 (= interquartile range), minimum, maximum) and confirmatory (two-sided Mann-Whitney U test for unpaired samples for the only one main variable of interest). Total error probability: .05 (5%). An intention to treat analysis ITT with last observed carry forward method was used preferably (presented results) and in addition an on treatment analysis OT. Only 2 (treatment group) and 4 (control group) drop-outs occurred (mostly due to lack of time). Results: The “sum of circumferences of waist, hip, and both thighs of each patient” decreased during the 4 weeks significantly more (p<.001) in the wIRA group than in the control group: medians and interquartile ranges: -8.0 cm (-10.5 cm/-4.1 cm) vs. -1.8 cm (-4.4 cm/0.0 cm). As well “body weight of each patient” decreased during the 4 weeks markedly more in the wIRA group than in the control group: medians and interquartile ranges: -1.9 kg (-4.0 kg/0.0 kg) vs. 0.0 kg (-1.5 kg/+0.4 kg); median of body weight changed from 99.3 kg to 95.6 kg (wIRA) vs. 89.9 kg to 89.6 kg (control). A similar effect showed the body mass index BMI. Blood variables of interest remained unchanged or showed some slight improvements during the treatment period, concerning most variables with no obvious differences between the two groups; insulin showed a slight trend to decrease in the wIRA group and to increase in the control group. Undesired effects of the treatment were not seen. Discussion: The results of the study suggest, that wIRA – during moderate bicycle ergometer endurance exercise as lipolytic stimulus – increases local lipolysis with a local fat reduction (thighs) in the otherwise bradytrophic fatty tissue. The presumably underlying mechanisms of wIRA have already been proven: wIRA acts both by thermal effects and by non-thermal effects. Thermal effects of wIRA are the generation of a therapeutic field of warmth with the increase of tissue temperature, tissue oxygen partial pressure, and tissue blood flow, and by this regional metabolism. As fatty tissue normally has a slow metabolism (bradytrophic and hypothermic tissue) with a low rate of lipolysis, wIRA can increase lipolysis in fatty tissue and the mobilized fats are burned in musculature during the ergometer exercise. Conclusion: The results of the study indicate, that wIRA irradiation during moderate ergometer endurance exercise can be used – in combination with an appropriate nutrition – to improve body composition, especially local fat distribution, and the reduction of fat and body weight in obese persons.
- Improvement of wound healing by water-filtered infrared-A (wIRA) in patients with chronic venous stasis ulcers of the lower legs including evaluation using infrared thermography (2008)
- Background: Water-filtered infrared-A (wIRA) is a special form of heat radiation with a high tissue-penetration and with a low thermal burden to the surface of the skin. wIRA is able to improve essential and energetically meaningful factors of wound healing by thermal and non-thermal effects. Aim of the study: prospective study (primarily planned randomised, controlled, blinded, de facto with one exception only one cohort possible) using wIRA in the treatment of patients with recalcitrant chronic venous stasis ulcers of the lower legs with thermographic follow-up. Methods: 10 patients (5 males, 5 females, median age 62 years) with 11 recalcitrant chronic venous stasis ulcers of the lower legs were treated with water-filtered infrared-A and visible light irradiation (wIRA(+VIS), Hydrosun® radiator type 501, 10 mm water cuvette, water-filtered spectrum 550–1400 nm) or visible light irradiation (VIS; only possible in one patient). The uncovered wounds of the patients were irradiated two to five times per week for 30 minutes at a standard distance of 25 cm (approximately 140 mW/cm2 wIRA and approximately 45 mW/cm2 VIS). Treatment continued for a period of up to 2 months (typically until closure or nearly closure of the ulcer). The main variable of interest was “percent change of ulcer size over time” including complete wound closure. Additional variables of interest were thermographic image analysis, patient’s feeling of pain in the wound, amount of pain medication, assessment of the effect of the irradiation (by patient and by clinical investigator), assessment of feeling of the wound area (by patient), assessment of wound healing (by clinical investigator) and assessment of the cosmetic state (by patient and by clinical investigator). For these assessments visual analogue scales (VAS) were used. Results: The study showed a complete or nearly complete healing of lower leg ulcers in 7 patients and a clear reduction of ulcer size in another 2 of 10 patients, a clear reduction of pain and pain medication consumption (e.g. from 15 to 0 pain tablets per day), and a normalization of the thermographic image (before the beginning of the therapy typically hyperthermic rim of the ulcer with relative hypothermic ulcer base, up to 4.5°C temperature difference). In one patient the therapy of an ulcer of one leg was performed with the fully active radiator (wIRA(+VIS)), while the therapy of an ulcer of the other leg was made with a control group radiator (only VIS without wIRA), showing a clear difference in favour of the wIRA treatment. All mentioned VAS ratings improved remarkably during the period of irradiation treatment, representing an increased quality of life. Failures of complete or nearly complete wound healing were seen only in patients with arterial insufficiency, in smokers or in patients who did not have venous compression garment therapy. Discussion and conclusions: wIRA can alleviate pain considerably (with an impressive decrease of the consumption of analgesics) and accelerate wound healing or improve a stagnating wound healing process and diminish an elevated wound exudation and inflammation both in acute and in chronic wounds (in this study shown in chronic venous stasis ulcers of the lower legs) and in problem wounds including infected wounds. In chronic recalcitrant wounds complete healing is achieved, which was not reached before. Other studies have shown that even without a disturbance of wound healing an acute wound healing process can be improved (e.g. reduced pain) by wIRA. wIRA is a contact-free, easily used and pleasantly felt procedure without consumption of material with a good penetration effect, which is similar to solar heat radiation on the surface of the earth in moderate climatic zones. Wound healing and infection defence (e.g. granulocyte function including antibacterial oxygen radical formation of the granulocytes) are critically dependent on a sufficient energy supply (and on sufficient oxygen). The good clinical effect of wIRA on wounds and also on problem wounds and wound infections can be explained by the improvement of both the energy supply and the oxygen supply (e.g. for the granulocyte function). wIRA causes as a thermal effect in the tissue an improvement in three decisive factors: tissue oxygen partial pressure, tissue temperature and tissue blood flow. Besides this non-thermal effects of infrared-A by direct stimulation of cells and cellular structures with reactions of the cells have also been described. It is concluded that wIRA can be used to improve wound healing, to reduce pain, exudation, and inflammation and to increase quality of life.
- Die infizierte Problemwunde (2006)
- Die erste Ausgabe der Online-Zeitschrift "GMS Krankenhaushygiene Interdisziplinär" der Deutschen Gesellschaft für Krankenhaushygiene (DGKH) innerhalb von German Medical Science behandelt das Thema "Die infizierte Problemwunde". Die Zielsetzung dieser Zeitschrift besteht in der komplexen Darstellung aktueller Themen der Krankenhaushygiene in interdisziplinärer Zusammenarbeit zwischen Hygienikern, Mikrobiologen, Infektiologen und für die jeweilige Thematik relevanten klinischen Fachdisziplinen und ggf. auch mit Experten anderer Fachrichtungen, z.B. Juristen, da rechtliche Aspekte zunehmend Bedeutung erlangen. ...
- Apparent contradiction between negative effects of UV radiation and positive effects of sun exposure (2005)
- We would like to comment on the three contributions in the Journal of the National Cancer Institute, Vol. 97, No. 3, February 2, 2005: Kathleen M. Egan, Jeffrey A. Sosman, William J. Blot: Editorial: Sunlight and Reduced Risk of Cancer: Is the Real Story Vitamin D? (pp. 161-163) ; Marianne Berwick, Bruce K. Armstrong, Leah Ben-Porat, Judith Fine, Anne Kricker, Carey Eberle, Raymond Barnhill: Sun Exposure and Mortality From Melanoma. (pp. 195-199) ; Karin Ekström Smedby, Henrik Hjalgrim, Mads Melbye, Anna Torrång, Klaus Rostgaard, Lars Munksgaard, et al.: Ultraviolet Radiation Exposure and Risk of Malignant Lymphomas. (pp. 199-209).
- Heat for wounds - water-filtered infrared-A (wIRA) for wound healing - a review (2016)
- Background: Water-filtered infrared-A (wIRA) is a special form of heat radiation with high tissue penetration and a low thermal load to the skin surface. wIRA corresponds to the major part of the sun’s heat radiation, which reaches the surface of the Earth in moderate climatic zones filtered by water and water vapour of the atmosphere. wIRA promotes healing of acute and chronic wounds both by thermal and thermic as well as by non-thermal and non-thermic cellular effects. Methods: This publication includes a literature review with search in PubMed/Medline for “water-filtered infrared-A” and “wound”/”ulcus” or “wassergefiltertes Infrarot A” and “Wunde”/”Ulkus”, respectively (publications in English and German), and additional analysis of study data. Seven prospective clinical studies (of these six randomized controlled trials (RCT), the largest study with n=400 patients) were identified and included. All randomized controlled clinical trials compare a combination of high standard care plus wIRA treatment vs. high standard care alone. The results below marked with “vs.” present these comparisons. Results: * wIRA increases tissue temperature (+2.7°C at a tissue depth of 2 cm), tissue oxygen partial pressure (+32% at a tissue depth of 2 cm) and tissue perfusion (effect sizes within the wIRA group). * wIRA promotes normal as well as disturbed wound healing by diminishing inflammation and exudation, by promotion of infection defense and regeneration, and by alleviation of pain (with respect to alleviation of pain, without any exception during 230 irradiations, 13.4 vs. 0.0 on a visual analogue scale (VAS 0–100), median difference between groups 13.8, 95% confidence interval (CI) 12.3/16.7, p<0.000001) with a substantially reduced need for analgesics (52–69% less in the three groups with wIRA compared to the three control groups in visceral surgery, p=0.000020 and 0.00037 and 0.0045, respectively; total of 6 vs. 14.5 analgesic tablets on 6 surveyed days (of weeks 1–6) in chronic venous stasis ulcers, median difference –8, 95% CI –10/–5, p=0.000002). Further effects are: * Faster reduction of wound area (in severely burned children: 90% reduction of wound size after 9 vs. 13 days, after 9 days 89.2% vs. 49.5% reduction in wound area, median difference 39.5% wound area reduction, 95% CI 36.7%/42.2%, p=0.000011; complete wound closure of chronic venous stasis ulcers after 14 vs. 42 days, median difference –21 days, 95% CI –28/–10, p=0.000005). * Better overall evaluation of wound healing (surgical wounds: 88.6 vs. 78.5 on a VAS 0–100, median difference 8.9, 95% CI 6.1/12.0, p<0.000001). * Better overall evaluation of the effect of irradiation (79.0 vs. 46.8 on a VAS 0–100 with 50 as neutral point, median difference 27.9, 95% CI 19.8/34.6, p<0.000001). * Higher tissue oxygen partial pressure during irradiation with wIRA (at a tissue depth of 2 cm 41.6 vs. 30.2 mmHg, median difference 11.9 mmHg, 95% CI 9.6/14.2 mmHg, p<0.000001). * Higher tissue temperature during irradiation with wIRA (at a tissue depth of 2 cm 38.9 vs. 36.4°C, median difference 2.6°C, 95% CI 2.2/2.9°C, p<0.000001). * Better cosmetic result (84.5 vs. 76.5 on a VAS 0–100, median difference 7.9, 95% CI 3.7/12.0, p=0.00027). * Lower wound infection rate (single preoperative irradiation: 5.1% vs. 12.1% wound infections in total, difference –7.0%, 95% CI –12.8%/–1.3%, p=0.017, of these: late wound infections (postoperative days 9-30) 1.7% vs. 7.7%, difference –6.0%, 95% CI –10.3%/–1.7%, p=0.007). * Shorter hospital stay (9 vs. 11 postoperative days, median difference –2 days, 95% CI –3/0 days, p=0.022). Most of the effects have been proven with an evidence level of 1a or 1b. Conclusion: Water-filtered infrared-A is a useful complement for the treatment of acute and chronic wounds. Keywords: water-filtered infrared-A (wIRA), wound healing, acute and chronic wounds, reduction of pain, tissue oxygen partial pressure, tissue temperature
- Wassergefiltertes Infrarot A (wIRA) zur Verbesserung der Wundheilung bei akuten und chronischen Wunden (2008)
- Wassergefiltertes Infrarot A (wIRA) ist eine spezielle Form der Wärmestrahlung. wIRA entspricht dem Großteil der in gemäßigten Klimazonen die Erdoberfläche wasserdampfgefiltert erreichenden Sonnenwärmestrahlung. wIRA vermag sowohl bei akuten Wunden als auch bei chronischen Wunden einschließlich infizierter Wunden Schmerzen deutlich zu mindern und eine erhöhte Wundsekretion und Entzündung herabzusetzen sowie positive immunmodulierende Effekte zu zeigen. wIRA kann die Wundheilung beschleunigen oder bei stagnierender Wundheilung verbessern oder sogar ermöglichen. Temperatur, Sauerstoffpartialdruck und Durchblutung im Gewebe als drei energetisch für Wundheilung wichtige Faktoren steigen. Selbst der normale Wundheilungsprozess kann durch wIRA verbessert werden. Die genannten Wirkungen sind durch sechs prospektive Studien belegt. Drei Studien wurden bei akuten Wunden durchgeführt: randomisierte, kontrollierte, doppeltblinde Studien der chirurgischen Universitätsklinik Heidelberg bei frischen abdominalen Operationswunden mit 111 Patienten und der Kinderchirurgie Kassel bei 45 schwerbrandverletzten Kindern sowie der Dermatologie der Charité Berlin bei 12 Probanden mit experimentellen Wunden. Drei Studien betreffen chronische venöse Unterschenkel-Ulzera: randomisierte, kontrollierte Studie in Basel mit 40 Patienten sowie prospektive Studie der Universität Tromsø/Norwegen und des Krankenhauses in Hillerød/Dänemark mit 10 Patienten mit u.a. aufwändiger Verlaufskontrolle mit Thermographie und derzeit durchgeführte randomisierte, kontrollierte, verblindete Studie der Universitätshautklinik Freiburg mit einem geplanten Umfang von ca. 50 Patienten.
- Klinische Anwendungen von wassergefiltertem Infrarot A (wIRA) – eine Übersicht (2017)
- Wassergefiltertes Infrarot A (wIRA) ist eine spezielle Form der Wärmestrahlung mit hohem Eindringvermögen in das Gewebe und geringer thermischer Belastung der Hautoberfläche. wIRA steigert deutlich Temperatur, Sauerstoffpartialdruck und Durchblutung im Gewebe und wirkt auch über nicht-thermische zelluläre Effekte. wIRA mindert indikationsübergreifend Schmerzen (mit relevant weniger Analgetikabedarf), Entzündung und vermehrte Sekretion und fördert Infektionsabwehr und Regeneration. Entsprechend breit sind die klinischen Anwendungsmöglichkeiten von wIRA. wIRA ist ein kontaktfreies, verbrauchsmaterialfreies, leicht anzuwendendes, (selbst bei Wunden) als angenehm empfundenes Verfahren mit guter Tiefenwirkung und anhaltendem Wärmedepot. wIRA ist u.a. einsetzbar zur Verbesserung der Heilung akuter und chronischer Wunden (wobei selbst eine ungestört "normal" ablaufende Wundheilung noch verbessert werden kann: schneller, schmerzärmer), bei Hauterkrankungen (wie vulgären Warzen, Herpes labialis, Herpes Zoster, Sklerodermie, Akne papulopustulosa; aktinischen Keratosen im Rahmen einer Photodynamischen Therapie), zur Resorptionsverbesserung topisch applizierter Substanzen, bei muskuloskeletalen Erkrankungen (wie Arthrosen, Arthritiden, Lumbago, ankylosierender Spondyloarthritis), zur Regeneration nach Sport, beim komplexen regionalen Schmerzsyndrom (CRPS), bei Polyneuropathien und in Kombination mit Strahlentherapie oder Chemotherapie in der Onkologie.