Refine
Keywords
- CD74 regulates complexity of tumor cell HLA class II peptidome in brain metastasis and is a positive prognostic marker for patient survival (2018)
- Despite multidisciplinary local and systemic therapeutic approaches, the prognosis for most patients with brain metastases is still dismal. The role of adaptive and innate anti-tumor response including the Human Leukocyte Antigen (HLA) machinery of antigen presentation is still unclear. We present data on the HLA class II-chaperone molecule CD74 in brain metastases and its impact on the HLA peptidome complexity. We analyzed CD74 and HLA class II expression on tumor cells in a subset of 236 human brain metastases, primary tumors and peripheral metastases of different entities in association with clinical data including overall survival. Additionally, we assessed whole DNA methylome profiles including CD74 promoter methylation and differential methylation in 21 brain metastases. We analyzed the effects of a siRNA mediated CD74 knockdown on HLA-expression and HLA peptidome composition in a brain metastatic melanoma cell line. We observed that CD74 expression on tumor cells is a strong positive prognostic marker in brain metastasis patients and positively associated with tumor-infiltrating T-lymphocytes (TILs). Whole DNA methylome analysis suggested that CD74 tumor cell expression might be regulated epigenetically via CD74 promoter methylation. CD74high and TILhigh tumors displayed a differential DNA methylation pattern with highest enrichment scores for antigen processing and presentation. Furthermore, CD74 knockdown in vitro lead to a reduction of HLA class II peptidome complexity, while HLA class I peptidome remained unaffected. In summary, our results demonstrate that a functional HLA class II processing machinery in brain metastatic tumor cells, reflected by a high expression of CD74 and a complex tumor cell HLA peptidome, seems to be crucial for better patient prognosis.
- Increased tumor vascularization is associated with the amount of immune competent PD-1 positive cells in testicular germ cell tumors (2018)
- Testicular germ cell cancer in a metastatic state is curable with a cisplatin‑based first line chemotherapy. However, 10‑15% of these patients are resistant to first line chemotherapy and are thus left with only palliative options. Immunotherapies and inhibition of angiogenesis used in multiple types of cancer; however, the molecular context of angiogenesis and immune checkpoints in the development and progression of testicular cancers is still unknown. Therefore, the present study performed tissue micro array based analysis of 84 patients with immunohistochemistry of programmed cell death protein 1 (PD‑1), programmed cell death ligand 1 (PD‑L1) and vascular endothelial growth factor receptor 2 (VEGFR2) of testicular cancer and corresponding normal appearing testis tissue, matching the results with clinical data. The results demonstrated that PD‑L1 was significantly upregulated in testicular tumors and that PD‑1 positive cells significantly infiltrated the testicular tumor when compared with normal testicular tissue. VEGFR2 was significantly upregulated in testicular cancer. It was indicated that PD‑1 expressing cytotoxic cells may require pathologic tumor vessels to pass the blood‑testis‑barrier in order to migrate into the tumor. Notably, when matching the clinical data for PD‑1, PD‑L1 and VEGFR2 there were no differences in expression in the different International Germ Cell Cancer Collaborative Group stages of non‑seminoma. These data suggested that the anti‑PD‑1/PD‑L1 immunotherapy and the anti‑angiogenic therapy, sequentially or in combination, may be a promising option in the treatment of testicular cancer.
- Netrin-1 expression is an independent prognostic factor for poor patient survival in brain metastases (2014)
- The multifunctional molecule netrin-1 is upregulated in various malignancies and has recently been presented as a major general player in tumorigenesis leading to tumor progression and maintenance in various animal models. However, there is still a lack of clinico-epidemiological data related to netrin-1 expression. Therefore, the aim of our study was to elucidate the association of netrin-1 expression and patient survival in brain metastases since those constitute one of the most limiting factors for patient prognosis. We investigated 104 brain metastases cases for netrin-1 expression using in-situ hybridization and immunohistochemistry with regard to clinical parameters such as patient survival and MRI data. Our data show that netrin-1 is strongly upregulated in most cancer subtypes. Univariate analyses revealed netrin-1 expression as a significant factor associated with poor patient survival in the total cohort of brain metastasis patients and in sub-entities such as non-small cell lung carcinomas. Interestingly, many cancer samples showed a strong nuclear netrin-1 signal which was recently linked to a truncated netrin-1 variant that enhances tumor growth. Nuclear netrin-1 expression was associated with poor patient survival in univariate as well as in multivariate analyses. Our data indicate both total and nuclear netrin-1 expression as prognostic factors in brain metastases patients in contrast to other prognostic markers in oncology such as patient age, number of brain metastases or Ki67 proliferation index. Therefore, nuclear netrin-1 expression constitutes one of the first reported molecular biomarkers for patient survival in brain metastases. Furthermore, netrin-1 may constitute a promising target for future anti-cancer treatment approaches in brain metastases.