### Refine

#### Keywords

- Meson (1)
- Quark (1)
- heiße Kernmaterie (1)
- hot hypernuclear matter (1)
- meson (1)
- quark (1)
- quark-meson coupling model (1)
- strange hadronic matter (1)

- Hot hypernuclear matter in the modified quark meson coupling model (1999)
- Hot hypernuclear matter is investigated in an explicit SU(3) quark model based on a mean field description of nonoverlapping baryon bags bound by the self-consistent exchange of scalar sigma, zeta and vector omega,phi mesons. The sigma, omega mean fields are assumed to couple to the u, d-quarks while the zeta ,phi mean fields are coupled to the s-quark. The coupling constants of the mean fields with the quarks are assumed to satisfy SU(6) symmetry. The calculations take into account the medium dependence of the bag parameter on the scalar fields sigma, zeta. We consider only the octet baryons N,Lambda,Sigma, Xi in hypernuclear matter. An ideal gas of the strange mesons K and K is introduced to keep zero net strangeness density. Our results for symmetric hypernuclear matter show that a phase transition takes place at a critical temperature around 180 MeV in which the scalar mean fields sigma, zeta take nonzero values at zero baryon density. Furthermore, the bag contants of the baryons decrease significantly at and above this critical temperature indicating the onset of quark deconfinement. The present results imply that the onset of quark deconfinement in SU(3) hypernuclear matter is much stronger than in SU(2) nuclear matter. PACS:21.65.+f, 24.85.+p, 12.39Ba

- Properties of dense strange hadronic matter with quark degrees of freedom (2001)
- The properties of strange hadronic matter are studied in the context of the modified quark-meson coupling model using two substantially di erent sets of hyperon-hyperon (Y Y ) interactions. The first set is based on the Nijmegen hard core potential model D with slightly attractive Y Y interactions. The second potential set is based on the recent SU(3) extension of the Nijmegen soft-core potential NSC97 with strongly attractive Y Y interactions which may allow for deeply bound hypernuclear matter. The results show that, for the first potential set, the hyperon does not appear at all in the bulk at any baryon density and for all strangeness fractions. The binding energy curves of the resulting N system vary smoothly with density and the system is stable (or metastable if we include the weak force). However, the situation is drastically changed when using the second set where the hyperons appear in the system at large baryon densities above a critical strangeness fraction. We find strange hadronic matter undergoes a first order phase transition from a N system to a N for strangeness fractions fS > 1.2 and baryonic densities exceeding twice ordinary nuclear matter density. Furthermore, it is found that the system built of N is deeply bound. This phase transition a ects significantly the equation of state which becomes much softer and a substantial drop in energy density and pressure are detected as the phase transition takes place. PACS:21.65.+f, 24.85.+p, 12.39Ba