### Refine

#### Year of publication

#### Document Type

- Working Paper (26)
- Report (5)
- Periodical Parts (2)

#### Keywords

- Contagion (4)
- General Equilibrium (4)
- consumption-portfolio choice (4)
- stochastic differential utility (4)
- Asset Pricing (3)
- capital structure (3)
- financing policy (3)
- incomplete markets (3)
- managerial incentives (3)
- welfare loss (3)

- Foundations of continuous-time recursive utility : differentiability and normalization of certainty equivalents (2009)
- This paper relates recursive utility in continuous time to its discrete-time origins and provides a rigorous and intuitive alternative to a heuristic approach presented in [Duffie, Epstein 1992], who formally define recursive utility in continuous time via backward stochastic differential equations (stochastic differential utility). Furthermore, we show that the notion of Gâteaux differentiability of certainty equivalents used in their paper has to be replaced by a different concept. Our approach allows us to address the important issue of normalization of aggregators in non-Brownian settings. We show that normalization is always feasible if the certainty equivalent of the aggregator is of expected utility type. Conversely, we prove that in general L´evy frameworks this is essentially also necessary, i.e. aggregators that are not of expected utility type cannot be normalized in general. Besides, for these settings we clarify the relationship of our approach to stochastic differential utility and, finally, establish dynamic programming results. JEL Classifications: D81, D91, C61

- A dynamic programming approach to constrained portfolios (2012)
- This paper studies constrained portfolio problems that may involve constraints on the probability or the expected size of a shortfall of wealth or consumption. Our first contribution is that we solve the problems by dynamic programming, which is in contrast to the existing literature that applies the martingale method. More precisely, we construct the non-separable value function by formalizing the optimal constrained terminal wealth to be a (conjectured) contingent claim on the optimal non-constrained terminal wealth. This is relevant by itself, but also opens up the opportunity to derive new solutions to constrained problems. As a second contribution, we thus derive new results for non-strict constraints on the shortfall of inter¬mediate wealth and/or consumption.

- Optimal housing, consumption, and investment decisions over the life-cycle (2009)
- We provide explicit solutions to life-cycle utility maximization problems simultaneously involving dynamic decisions on investments in stocks and bonds, consumption of perishable goods, and the rental and the ownership of residential real estate. House prices, stock prices, interest rates, and the labor income of the decision-maker follow correlated stochastic processes. The preferences of the individual are of the Epstein-Zin recursive structure and depend on consumption of both perishable goods and housing services. The explicit consumption and investment strategies are simple and intuitive and are thoroughly discussed and illustrated in the paper. For a calibrated version of the model we find, among other things, that the fairly high correlation between labor income and house prices imply much larger life-cycle variations in the desired exposure to house price risks than in the exposure to the stock and bond markets. We demonstrate that the derived closed-form strategies are still very useful if the housing positions are only reset infrequently and if the investor is restricted from borrowing against future income. Our results suggest that markets for REITs or other financial contracts facilitating the hedging of house price risks will lead to non-negligible but moderate improvements of welfare.

- What is the impact of stock market contagion on an investor's portfolio choice? (2009)
- Stocks are exposed to the risk of sudden downward jumps. Additionally, a crash in one stock (or index) can increase the risk of crashes in other stocks (or indices). Our paper explicitly takes this contagion risk into account and studies its impact on the portfolio decision of a CRRA investor both in complete and in incomplete market settings. We find that the investor significantly adjusts his portfolio when contagion is more likely to occur. Capturing the time dimension of contagion, i.e. the time span between jumps in two stocks or stock indices, is thus of first-order importance when analyzing portfolio decisions. Investors ignoring contagion completely or accounting for contagion while ignoring its time dimension suffer large and economically significant utility losses. These losses are larger in complete than in incomplete markets, and the investor might be better off if he does not trade derivatives. Furthermore, we emphasize that the risk of contagion has a crucial impact on investors' security demands, since it reduces their ability to diversify their portfolios.

- Investment, income, incompleteness (2009)
- The utility-maximizing consumption and investment strategy of an individual investor receiving an unspanned labor income stream seems impossible to find in closed form and very dificult to find using numerical solution techniques. We suggest an easy procedure for finding a specific, simple, and admissible consumption and investment strategy, which is near-optimal in the sense that the wealthequivalent loss compared to the unknown optimal strategy is very small. We first explain and implement the strategy in a simple setting with constant interest rates, a single risky asset, and an exogenously given income stream, but we also show that the success of the strategy is robust to changes in parameter values, to the introduction of stochastic interest rates, and to endogenous labor supply decisions.

- Pricing two trees when mildew infests the orchard: how does contagion affect general equilibrium asset prices : [version: March 11, 2011] (2011)
- This paper analyzes the equilibrium pricing implications of contagion risk in a two-tree Lucas economy with CRRA preferences. The dividends of both trees are subject to downward jumps. Some of these jumps are contagious and increase the risk of subsequent jumps in both trees for some time interval. We show that contagion risk leads to large price-dividend ratios for small assets, a joint movement of prices in the case of a regime change from the calm to the contagion state, significantly positive correlations between assets, and large positive betas for small assets. Whereas disparities between the assets with respect to their propensity to trigger contagion barely matter for pricing, the prices of robust assets that are hardly affected by contagion and excitable assets that are severely hit by contagion differ significantly. Both in absolute terms and relatively to the market, the price of a small safe haven increases if the economy reaches the contagion state. On the contrary, the price of a small, contagion-sensitive asset exhibits a pronounced downward jump.

- Asset pricing and consumption-portfolio choice with recursive utility and unspanned risk : [version 4 august 2014] (2014)
- We study consumption-portfolio and asset pricing frameworks with recursive preferences and unspanned risk. We show that in both cases, portfolio choice and asset pricing, the value function of the investor/ representative agent can be characterized by a specific semilinear partial differential equation. To date, the solution to this equation has mostly been approximated by Campbell-Shiller techniques, without addressing general issues of existence and uniqueness. We develop a novel approach that rigorously constructs the solution by a fixed point argument. We prove that under regularity conditions a solution exists and establish a fast and accurate numerical method to solve consumption-portfolio and asset pricing problems with recursive preferences and unspanned risk. Our setting is not restricted to affine asset price dynamics. Numerical examples illustrate our approach.

- Financing asset growth (2012)
- We document the existence of a debt anomaly that is in addition to the asset growth anomaly: for a given asset growth rate, firms that issue more debt, as well as firms that retire more debt, have lower stock returns in the 12 months starting 6 months after the calendar year of asset growth. Exploring the reasons for debt issuance, we find that managers of firms for which analyst expectations are more over-optimistic, which suffer from declining investment profitability, and whose earnings-price ratios are relatively high are inclined to rely more heavily on debt financing. On the other hand, firms that retire more debt for a given asset growth rate tend to have improving profitability but to be over-priced. We also find that the financing decision is influenced by the prior debt ratio, the asset growth rate, profitability, and CEO pay sensitivity. We interpret our results in terms of managerial incentives, signaling, and market timing.

- Systemic risk in the financial sector: what can we learn from option markets? : [version 10 february 2014] (2014)
- We propose a novel approach on how to estimate systemic risk and identify its key determinants. For US financial companies with publicly traded equity options, we extract option-implied value-at-risks and measure the spillover effects between individual company value-at-risks and the option-implied value-at-risk of a financial index. First, we study the spillover effect of increasing company risks on the financial sector. Second, we analyze which companies are mostly affected if the tail risk of the financial sector increases. Key metrics such as size, leverage, market-to-book ratio and earnings have a significant influence on the systemic risk profiles of financial institutions.

- Consumption-portfolio choice with preferences for cash (2017)
- This paper studies a consumption-portfolio problem where money enters the agent's utility function. We solve the corresponding Hamilton-Jacobi-Bellman equation and provide closed-form solutions for the optimal consumption and portfolio strategy both in an infinite- and finite-horizon setting. For the infinite-horizon problem, the optimal stock demand is one particular root of a polynomial. In the finite-horizon case, the optimal stock demand is given by the inverse of the solution to an ordinary differential equation that can be solved explicitly. We also prove verification results showing that the solution to the Bellman equation is indeed the value function of the problem. From an economic point of view, we find that in the finite-horizon case the optimal stock demand is typically decreasing in age, which is in line with rules of thumb given by financial advisers and also with recent empirical evidence.