### Refine

#### Keywords

- Contagion (3)
- Asset Allocation (2)
- General Equilibrium (2)
- labor income (2)
- recursive utility (2)
- welfare loss (2)
- Asset Pricing (1)
- Bellman Equations (1)
- Consumption hump (1)
- Consumption-investment Problems (1)

- Consumption habits and humps (2013)
- We show that the optimal consumption of an individual over the life cycle can have the hump shape (inverted U-shape) observed empirically if the preferences of the individual exhibit internal habit formation. In the absence of habit formation, an impatient individual would prefer a decreasing consumption path over life. However, because of habit formation, a high initial consumption would lead to high required consumption in the future. To cover the future required consumption, wealth is set aside, but the necessary amount decreases with age which allows consumption to increase in the early part of life. At some age, the impatience outweighs the habit concerns so that consumption starts to decrease. We derive the optimal consumption strategy in closed form, deduce sufficient conditions for the presence of a consumption hump, and characterize the age at which the hump occurs. Numerical examples illustrate our findings. We show that our model calibrates well to U.S. consumption data from the Consumer Expenditure Survey.

- When do jumps matter for portfolio optimization? (2013)
- We consider the continuous-time portfolio optimization problem of an investor with constant relative risk aversion who maximizes expected utility of terminal wealth. The risky asset follows a jump-diffusion model with a diffusion state variable. We propose an approximation method that replaces the jumps by a diffusion and solve the resulting problem analytically. Furthermore, we provide explicit bounds on the true optimal strategy and the relative wealth equivalent loss that do not rely on results from the true model. We apply our method to a calibrated affine model and fine that relative wealth equivalent losses are below 1.16% if the jump size is stochastic and below 1% if the jump size is constant and γ ≥ 5. We perform robustness checks for various levels of risk-aversion, expected jump size, and jump intensity.

- Stochastic differential utility as the continuous-time limit of recursive utility (2013)
- We establish a convergence theorem that shows that discrete-time recursive utility, as developed by Kreps and Porteus (1978), converges to stochastic differential utility, as introduced by Dufffie and Epstein (1992), in the continuous-time limit of vanishing grid size.

- Systemic risk in the financial sector: what can we learn from option markets? (2013)
- In this paper, we propose a novel approach on how to estimate systemic risk and identify its key determinants. For all US financial companies with publicly traded equity options, we extract their option-implied value-at-risks (VaRs) and measure the spillover effects between individual company VaRs and the option-implied VaR of an US financial index. First, we study the spillover effect of increasing company risks on the financial sector. Second, we analyze which companies are most affected if the tail risk of the financial sector increases. We find that key accounting and market valuation metrics such as size, leverage, balance sheet composition, market-to-book ratio and earnings have a significant influence on the systemic risk profile of a financial institution. In contrast to earlier studies, the employed panel vector autoregression (PVAR) estimator allows for a causal interpretation of the results.

- A dynamic programming approach to constrained portfolios (2012)
- This paper studies constrained portfolio problems that may involve constraints on the probability or the expected size of a shortfall of wealth or consumption. Our first contribution is that we solve the problems by dynamic programming, which is in contrast to the existing literature that applies the martingale method. More precisely, we construct the non-separable value function by formalizing the optimal constrained terminal wealth to be a (conjectured) contingent claim on the optimal non-constrained terminal wealth. This is relevant by itself, but also opens up the opportunity to derive new solutions to constrained problems. As a second contribution, we thus derive new results for non-strict constraints on the shortfall of inter¬mediate wealth and/or consumption.

- Life insurance demand under health shock risk (2014)
- This paper studies the life cycle consumption-investment-insurance problem of a family. The wage earner faces the risk of a health shock that significantly increases his probability of dying. The family can buy term life insurance with realistic features. In particular, the available contracts are long term so that decisions are sticky and can only be revised at significant costs. Furthermore, a revision is only possible as long as the insured person is healthy. A second important and realistic feature of our model is that the labor income of the wage earner is unspanned. We document that the combination of unspanned labor income and the stickiness of insurance decisions reduces the insurance demand significantly. This is because an income shock induces the need to reduce the insurance coverage, since premia become less affordable. Since such a reduction is costly and families anticipate these potential costs, they buy less protection at all ages. In particular, young families stay away from life insurance markets altogether.

- Growth options and firm valuation (2013)
- This paper studies the relation between firm value and a firm's growth options. We find strong empirical evidence that (average) Tobin's Q increases with firm-level volatility. However, the significance mainly comes from R&D firms, which have more growth options than non-R&D firms. By decomposing firm-level volatility into its systematic and unsystematic part, we also document that only idiosyncratic volatility (ivol) has a significant effect on valuation. Second, we analyze the relation of stock returns to realized contemporaneous idiosyncratic volatility and R&D expenses. Single sorting according to the size of idiosyncratic volatility, we only find a significant ivol anomaly for non-R&D portfolios, whereas in a four-factor model the portfolio alphas of R&D portfolios are all positive. Double sorting on idiosyncratic volatility and R&D expenses also reveals these differences between R&D and non-R&D firms. To simultaneously control for several explanatory variables, we also run panel regressions of portfolio alphas which confirm the relative importance of idiosyncratic volatility that is amplified by R&D expenses.

- Partial information about contagion risk, self-exciting processes and portfolio optimization (2013)
- This paper compares two classes of models that allow for additional channels of correlation between asset returns: regime switching models with jumps and models with contagious jumps. Both classes of models involve a hidden Markov chain that captures good and bad economic states. The distinctive feature of a model with contagious jumps is that large negative returns and unobservable transitions of the economy into a bad state can occur simultaneously. We show that in this framework the filtered loss intensities have dynamics similar to self-exciting processes. Besides, we study the impact of unobservable contagious jumps on optimal portfolio strategies and filtering.

- How does contagion affect general equilibrium asset prices? (2013)
- This paper analyzes the equilibrium pricing implications of contagion risk in a Lucas-tree economy with recursive preferences and jumps. We introduce a new economic channel allowing for the possibility that endowment shocks simultaneously trigger a regime shift to a bad economic state. We document that these contagious jumps have far-reaching asset pricing implications. The risk premium for such shocks is superadditive, i.e. it is 2.5\% larger than the sum of the risk premia for pure endowment shocks and regime switches. Moreover, contagion risk reduces the risk-free rate by around 0.5\%. We also derive semiclosed-form solutions for the wealth-consumption ratio and the price-dividend ratios in an economy with two Lucas trees and analyze cross-sectional effects of contagion risk qualitatively. We find that heterogeneity among the assets with respect to contagion risk can increase risk premia disproportionately. In particular, big assets with a large exposure to contagious shocks carry significantly higher risk premia.

- Foundations of continuous-time recursive utility : differentiability and normalization of certainty equivalents (2009)
- This paper relates recursive utility in continuous time to its discrete-time origins and provides a rigorous and intuitive alternative to a heuristic approach presented in [Duffie, Epstein 1992], who formally define recursive utility in continuous time via backward stochastic differential equations (stochastic differential utility). Furthermore, we show that the notion of Gâteaux differentiability of certainty equivalents used in their paper has to be replaced by a different concept. Our approach allows us to address the important issue of normalization of aggregators in non-Brownian settings. We show that normalization is always feasible if the certainty equivalent of the aggregator is of expected utility type. Conversely, we prove that in general L´evy frameworks this is essentially also necessary, i.e. aggregators that are not of expected utility type cannot be normalized in general. Besides, for these settings we clarify the relationship of our approach to stochastic differential utility and, finally, establish dynamic programming results. JEL Classifications: D81, D91, C61