Refine
Year of publication
Document Type
- Preprint (146)
- Article (59)
- Conference Proceeding (3)
- Report (1)
Keywords
- Kollisionen schwerer Ionen (26)
- heavy ion collisions (21)
- Kollisionen schwerer Ionen (14)
- heavy ion collisions (12)
- Quark-Gluon-Plasma (9)
- Quark Gluon Plasma (8)
- QGP (7)
- UrQMD (7)
- Zustandsgleichung (7)
- equation of state (6)
Institute
- Physik (209) (remove)
- "Antiflow" of antiprotons in heavy ion collisions (1994)
- In the framework of the relativistic quantum dynamics approach we investigate antiproton observables in Au-Au collisions at 10.7A GeV. The rapidity dependence of the in-plane directed transverse momentum p(y) of p's shows the opposite sigh of the nucleon flow, which has indeed recently been discovered at 10.7A GeV by the E877 group. The "antiflow" of p's is also predicted at 2A GeV and at 160 A GeV and appears at all energies also for pi's and K's. These predicted p anticorrelations are a direct proof of strong p annihilation in massive heavy ion reactions.
- "Pressure equilibration" in ultrarelativistic heavy ion collisions (1997)
- We study the time scale for pressure equilibration in heavy ion collisions at AGS energies within the three-fluid hydrodynamical model and a microscopic cascade model (UrQMD). We find that kinetic equilibrium is reached in both models after a time of 5 fm/c (center-of-mass time). Thus, observables which are sensitive to the early stage of the reaction differ considerably from the expectations within the instant thermalization scenario (one-fluid hydrodynamical model).
- "Soft'' transverse expansion and flow in a multi-fluid model without phase transition (1997)
- Abstract: We study transverse expansion and directed flow in Au(11AGeV)Au reactions within a multi-fluid dynamical model. Although we do not employ an equation of state (EoS) with a first order phase transition, we find a slow increase of the transverse velocities of the nucleons with time. A similar behaviour can be observed for the directed nucleon flow. This is due to non-equilibrium e ects which also lead to less and slower conversion of longitudinal into transverse momentum. We also show that the proton rapidity distribution at CERN energies, as calculated within this model, agrees well with the preliminary NA44-data.
- A microscopic calculation of secondary Drell-Yan production in heavy ion collisions (1997)
- A study of secondary Drell-Yan production in nuclear collisions is presented for SPS energies. In addition to the lepton pairs produced in the initial collisions of the projectile and target nucleons, we consider the potentially high dilepton yield from hard valence antiquarks in produced mesons and antibaryons. We calculate the secondary Drell-Yan contributions taking the collision spectrum of hadrons from the microscopic model URQMD. The con- tributions from meson-baryon interactions, small in hadron-nucleus interac- tions, are found to be substantial in nucleus-nucleus collisions at low dilepton masses. Preresonance collisions of partons may further increase the yields.
- A self-consistent equation of state for nuclear matter (1993)
- The authors formulate a phenomenological extension of the mean-field theory approach and define a class of thermodynamically self-consistent equations of state for nuclear matter. A new equation of state of this class is suggested and examined in detail.
- A Stopped delta-matter source in heavy ion collisions at 10-GeV/N? (1994)
- We predict the formation of highly dense baryon-rich resonance matter in Au+Au collisions at AGS energies. The final pion yields show observable signs for resonance matter. The Delta1232 resonance is predicted to be the dominant source for pions of small transverse momenta. Rescattering e ects consecutive excitation and deexcitation of Delta's lead to a long apparent life- time (> 10 fm/c) and rather large volumina (several 100 fm3) of the Delta-matter state. Heavier baryon resonances prove to be crucial for reaction dynamics and particle production at AGS.
- Analysis of reaction dynamics at RHIC in a combined parton/hadron transport approach (1999)
- We introduce a transport approach which combines partonic and hadronic degrees of freedom on an equal footing and discuss the resulting reaction dynamics. The initial parton dynamics is modeled in the framework of the parton cascade model, hadronization is performed via a cluster hadronization model and configuration space coalescence, and the hadronic phase is described by a microscopic hadronic transport approach. The resulting reaction dynamics indicates a strong influence of hadronic rescattering on the space-time pattern of hadronic freeze-out and on the shape of transverse mass spectra. Freeze-out times and transverse radii increase by factors of 2 3 depending on the hadron species.
- Anti-proton production and annihilation in nuclear collisions at 15-A/GeV (1992)
- We present a calculation of antiproton yields in Si+Al and Si+Au collisions at 14.5A GeV in the framework of the relativistic quantum molecular dynamics approach (RQMD). Multistep processes lead to the formation of high-mass flux tubes. Their decay dominates the initial antibaryon yield. However, the subsequent annihilation in the surrounding baryon-rich matter suppresses the antiproton yield considerably: Two-thirds of all antibaryons are annihilated even for the light Si+Al system. Comparisons with preliminary data of the E802 experiment support this analysis.
- Antibaryons bound in nuclei (2004)
- We study the possibility of producing a new kind of nuclear systems which in addition to ordinary nucleons contain a few antibaryons (B = p, , etc.). The properties of such systems are described within the relativistic mean field model by employing G parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from 4He to 208Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus resulting in a significant increase of its binding energy and local compression. Noticeable e ects remain even after the antibaryon coupling constants are reduced by factor 3 4 compared to G parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that due to significant reduction of the reaction Q values, the in medium annihilation rates should be strongly suppressed leading to relatively long lived antibaryon nucleus systems. Multi nucleon annihilation channels are analyzed too. We have also estimated formation probabilities of bound B + A systems in pA reactions and have found that their observation will be feasible at the future GSI antiproton facility. Several observable signatures are proposed. The possibility of producing multi quark antiquark clusters is discussed. PACS numbers: 25.43.+t, 21.10.-k, 21.30.Fe, 21.80.+a
- Antibaryons in massive heavy ion reactions : importance of potentials (1995)
- In the framework of RQMD we investigate antiproton observables in massive heavy ion collisions at AGS energies and compare to preliminary results of the E878 collaboration. We focus here on the considerable influence of the real part of an antinucleon nucleus optical potential on the ¯p momentum spectra. Pacs-numbers: 14.20 Dh, 25.70.-z