- A Stopped delta-matter source in heavy ion collisions at 10-GeV/N? (1994)
- We predict the formation of highly dense baryon-rich resonance matter in Au+Au collisions at AGS energies. The final pion yields show observable signs for resonance matter. The Delta1232 resonance is predicted to be the dominant source for pions of small transverse momenta. Rescattering e ects consecutive excitation and deexcitation of Delta's lead to a long apparent life- time (> 10 fm/c) and rather large volumina (several 100 fm3) of the Delta-matter state. Heavier baryon resonances prove to be crucial for reaction dynamics and particle production at AGS.
- "Antiflow" of antiprotons in heavy ion collisions (1994)
- In the framework of the relativistic quantum dynamics approach we investigate antiproton observables in Au-Au collisions at 10.7A GeV. The rapidity dependence of the in-plane directed transverse momentum p(y) of p's shows the opposite sigh of the nucleon flow, which has indeed recently been discovered at 10.7A GeV by the E877 group. The "antiflow" of p's is also predicted at 2A GeV and at 160 A GeV and appears at all energies also for pi's and K's. These predicted p anticorrelations are a direct proof of strong p annihilation in massive heavy ion reactions.
- High pT pions as probes of the dense phase of relativistic heavy ion collisions (1994)
- The properties of pions from the hot and dense reaction stage of relativistic heavy ion collisions are investigated with the quantum molecular dynamics model. Pions originating from this reaction stage stem from resonance decay with enhanced mass. They carry high transverse momenta. The calculation shows a direct correlation between high pt pions, early freeze-out times and high freeze-out densities.
- Azimuthal correlations of pions in relativistic heavy ion collisions at 1 GeV/nucl. (1995)
- Triple differential cross sections of pions in heavy ion collisions at 1 GeV/nucl. are studied with the IQMD model. After discussing general properties of resonance and pion production we focus on azimuthal correlations: At projectile- and target-rapidities we observe an anticorrelation in the in-plane transverse momentum between pions and protons. At c.m.-rapidity, however, we find that high pt pions are being preferentially emitted perpendicular to the event-plane. We investigate the causes of those correlations and their sensitivity on the density and momentum dependence of the real and imaginary part of the nucleon and pion optical potential.
- On the impossibility of temperature extraction from heavy ion induced particle spectra (1995)
- Spectra of various particle species have been calculated with the Quantum Molecular Dynamics (QMD) model for very central collisions of Au+Au. They are compatible with the idea of a fully stopped thermal source which exhibits a transversal expansion besides the thermal distribution of an ideal gas. How- ever, the microscopic analyses of the local flow velocities and temperatures indicate much lower temperatures at densities associated with the freeze-out. The results express the overall impossibility of a model-independent determi- nation of nuclear temperatures from heavy ion spectral data, also at other energies (e.g. CERN) or for other species (i.e. pions, kaons, hyperons)
- Prominent transverse flow of clusters in stopped Au(150 A MeV)+Au reactions (1995)
- Stopped Au(150 A MeV) + Au collisions have been measured with the FOPI-Detector at GSI by imposing an upper limit on the ratio of the global longitudinal momentum to the collected charge within an event.
- Bose stimulated pion production in relativistic nuclear collisions (1995)
- We demonstrate the importance of the Bose-statistical effects for pion production in relativistic heavy-ion collisions. The evolution of the pion phase-space density in central collisions of ultrarelativistic nuclei is studied in a simple kinetic model taking into account the effect of Bose-simulated pion production by the NN collisions in a dense cloud of mesons.
- pi-N correlations probe the nuclear equation of state in relativistic heavy ion-collisions (1995)
- We investigate the sensivity of pionic bounce-off and squeeze-out on the density and momentum dependence of the real part of the nucleon optical potential. For the in-plane pion bounce-off we find a strong sensivity on both the density and momentum dependence whereas the out-of-plane pion squeeze-out shows a strong sensivity only towards the momentum dependence but little sensivity towards the density dependence.
- Baryon-antibaryon pair production in time-dependent meson fields (1995)
- Strong mean meson fields, which are known to exist in normal nuclei, experience a violent deformation in the course of a heavy-ion collision at relativistic energies. This may give rise to a new collective mechanism of the particle production, not reducible to the superposition of elementary nucleon-nucleon collisions.
- Neural networks for impact parameter determination (1996)
- Abstract: An accurate impact parameter determination in a heavy ion collision is crucial for almost all further analysis. The capabilities of an artificial neural network are investigated to that respect. A novel input generation for the network is proposed, namely the transverse and longitudinal momentum distribution of all outgoing (or actually detectable) particles. The neural network approach yields an improvement in performance of a factor of two as compared to classical techniques. To achieve this improvement simple network architectures and a 5 × 5 input grid in (pt, pz) space are suffcient.