### Refine

#### Year of publication

- 1999 (41) (remove)

#### Keywords

- Energie (4)
- Hadron (4)
- Quark (4)
- relativistic (4)
- Kollisionen schwerer Ionen (3)
- energy (3)
- quark (3)
- relativistisch (3)
- Dirac (2)
- Hadron (2)

- Modeling J /Psi production and absorption in a microscopic nonequilibrium approach (1999)
- Charmonium production and absorption in heavy ion collisions is studied with the Ultrarelativisitic Quantum Molecular Dynamics model. We compare the scenario of universal and time independent color-octet dissociation cross sections with one of distinct color-singlet J/psi, psi 2 and CHIc states, evolving from small, color transparent configurations to their asymptotic sizes. The measured J/psi production cross sections in pA and AB collisions at SPS energies are consistent with both purely hadronic scenarios. The predicted rapidity dependence of J/psi suppression can be used to discriminate between the two experimentally. The importance of interactions with secondary hadrons and the applicability of thermal reaction kinetics to J/psi absorption are in- vestigated. We discuss the e ect of nuclear stopping and the role of leading hadrons. The dependence of the 2/J/psi ratio on the model assumptions and the possible influence of refeeding processes is also studied.

- Analysis of reaction dynamics at RHIC in a combined parton/hadron transport approach (1999)
- We introduce a transport approach which combines partonic and hadronic degrees of freedom on an equal footing and discuss the resulting reaction dynamics. The initial parton dynamics is modeled in the framework of the parton cascade model, hadronization is performed via a cluster hadronization model and configuration space coalescence, and the hadronic phase is described by a microscopic hadronic transport approach. The resulting reaction dynamics indicates a strong influence of hadronic rescattering on the space-time pattern of hadronic freeze-out and on the shape of transverse mass spectra. Freeze-out times and transverse radii increase by factors of 2 3 depending on the hadron species.

- Kaon effective mass and energy from a novel chiral SU(3) symmetric Lagrangian (1999)
- A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and antikaons in the nuclear medium, the ground state of dense matter and the kaon-nuclear interactions consistently. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Brückner theory. After taking into account the coupling between the omega meson and the kaon, we obtain similar results for the e ective kaon and antikaon energies as calculated in the one-boson-exchange model while in our model the parameters of the kaon-nuclear interactions are constrained by the SU(3) chiral symmetry. PACS number(s): 14.40.Aq, 12.39.Fe, 21.30.Fe

- Relativistic quantum transport theory of hadronic matter : the coupled nucleon, Delta, and pion system (1999)
- We derive the relativistic quantum transport equation for the pion distribution function based on an effective Lagrangian of the QHD-II model. The closed-time-path Green s function technique and the semiclassical, quasiparticle, and Born approximations are employed in the derivation. Both the mean field and collision term are derived from the same Lagrangian and presented analytically. The dynamical equation for the pions is consistent with that for the nucleons and Delta's which we developed before. Thus, we obtain a relativistic transport model which describes the hadronic matter with N,Delta, and pi degrees of freedom simultaneously. Within this approach, we investigate the medium effects on the pion dispersion relation as well as the pion absorption and pion production channels in cold nuclear matter. In contrast to the results of the nonrelativistic model, the pion dispersion relation becomes harder at low momenta and softer at high momenta as compared to the free one, which is mainly caused by the relativistic kinetics. The theoretically predicted free piN->Delta cross section is in agreement with the experimental data. Medium effects on the piN->Delta cross section and momentum-dependent Delta-decay width are shown to be substantial. PACS-numbers: 24.10.Jv, 13.75.Cs, 21.65.1f, 25.75.2q

- Relativistic Hartree approach including both positive- and negative-energy bound states (1999)
- We develop a relativistic model to describe the bound states of positive energy and negative energy in finite nuclei at the same time. Instead of searching for the negative-energy solution of the nucleon's Dirac equation, we solve the Dirac equations for the nucleon and the anti-nucleon simultaneously. The single-particle energies of negative-energy nucleons are obtained through changing the sign of the single-particle energies of positive-energy anti-nucleons. The contributions of the Dirac sea to the source terms of the meson fields are evaluated by means of the derivative expansion up to the leading derivative order for the one-meson loop and one-nucleon loop. After refitting the parameters of the model to the properties of spherical nuclei, the results of positive-energy sector are similar to that calculated within the commonly used relativistic mean field theory under the no-sea approximation. However, the bound levels of negative-energy nucleons vary drastically when the vacuum contributions are taken into account. It implies that the negative-energy spectra deserve a sensitive probe to the effective interactions in addition to the positive-energy spectra.

- Relativistic Hartree approach including negative energy-bound states (1999)
- We develop a relativistic model to describe the bound states of positive energy and negative energy in finite nuclei at the same time. Instead of searching for the negative-energy solution of the nucleon s Dirac equation, we solve the Dirac equations for the nucleon and the anti-nucleon simultaneously. The single-particle energies of negative-energy nucleons are obtained through changing the sign of the single-particle energies of positive-energy anti-nucleons. The contributions of the Dirac sea to the source terms of the meson fields are evaluated by means of the derivative expansion up to the leading derivative order for the one-meson loop and one-nucleon loop. After refitting the parameters of the model to the properties of spherical nuclei, the results of positive-energy sector are similar to that calculated within the commonly used relativistic mean field theory under the no-sea approximation. However, the bound levels of negative-energy nucleons vary drastically when the vacuum contributions are taken into account. It implies that the negative-energy spectra deserve a sensitive probe to the e ective interactions in addition to the positive-energy spectra.

- Dissociation of expanding c anti-c states in heavy ion collisions (1999)
- We study J/psi suppression in AB collisions assuming that the charmonium states evolve from small, color transparent configurations. Their interaction with nucleons and nonequilibrated, secondary hadrons is simulated using the microscopic model UrQMD. The Drell-Yan lepton pair yield and the J/psi Drell-Yan ratio are calculated as a function of the neutral transverse energy in Pb+Pb collisions at 160 GeV and found to be in reasonable agreement with existing data.

- Non-equilibrium initial conditions from pQCD for RHIC and LHC (1999)
- We calculate the initial non-equilibrium conditions from perturbative QCD (pQCD) within Glauber multiple scattering theory for s = 200 AGeV and s = 5.5 ATeV. At the soon available collider energies one will particularly test the small x region of the parton distributions entering the cross sections. Therefore shadowing effects, previously more or less unimportant, will lead to new e ects on variables such as particle multiplicities dN/dy, transverse energy production d T /dy, and the initial temperature Ti. In this paper we will have a closer look on the effects of shadowing by employing di erent parametrizations for the shadowing effect for valence quarks, sea quarks and gluons. Since the cross sections at midrapidity are dominated by processes involving gluons the amount of their depletion is particularly important. We will therefore have a closer look on the results for dN/dy, d ¯E T /dy, and Ti by using two different gluon shadowing ratios, di ering strongly in size. As a matter of fact, the calculated quantities di er significantly.

- Rho meson broadening in hot and dense hadronic matter (1999)
- The modification of the width of rho mesons due to in-medium decays and collisions is evaluated. The decay width is calculated from the imaginary part of the one-loop selfenergy at finite temperature. The collision width is related to the cross sections of the rho + pion and the rho + nucleon reactions. A calculation based on an e ective Lagrangian shows the importance of including the direct pho pi - > pho pi scattering which is dominated by the a1 exchange. A large broadening of the spectral function is found, accompanied by a strength suppression at the pole. http://www.arxiv.org/abs/nucl-th/9812059

- Freeze out in hydrodynamical models (1999)
- We study the effects of strict conservation laws and the problem of negative contributions to final momentum distribution during the freeze out through 3-dimensional hypersurfaces with space-like normal. We study some suggested solutions for this problem, and demonstrate it on one example. PACS: 24.10.Nz, 25.75.-q