### Refine

#### Year of publication

- 1999 (41) (remove)

#### Keywords

- Energie (4)
- Hadron (4)
- Quark (4)
- relativistic (4)
- Kollisionen schwerer Ionen (3)
- energy (3)
- quark (3)
- relativistisch (3)
- Dirac (2)
- Hadron (2)

- Critical review of quark gluon plasma signatures (1999)
- Noneequilibrium models (three-fluid hydrodynamics and UrQMD) use to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that these two models - although they do treat the most interesting early phase of the collisions quite differently(thermalizing QGP vs. coherent color fields with virtual particles) - both yields a reasonable agreement with a large variety of the available heavy ion data.

- Impact parameter dependencies in Pb(160 AGeV)+Pb reactions : hydrodynamical vs. cascade calculations (1999)
- We investigate the impact parameter dependence of the specific entropy S/A in relativistic heavy ion collisions. Especially the anti-Lambda/anti-proton ratio is found to be a useful tool to distinguish between chemical equilibrium assumptions assumed in hydrodynamics (here: the 3-fluid model) and the chemical non-equilibrium scenario like in microscopic models as the UrQMD model.

- Physics opportunities at RHIC and LHC (1999)
- Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out.

- Antiflow of nucleons at the softest point of the EoS (1999)
- Report-no: UFTP-492/1999 Journal-ref: Phys.Rev. C61 (2000) 024909 We investigate flow in semi-peripheral nuclear collisions at AGS and SPS energies within macroscopic as well as microscopic transport models. The hot and dense zone assumes the shape of an ellipsoid which is tilted by an angle Theta with respect to the beam axis. If matter is close to the softest point of the equation of state, this ellipsoid expands predominantly orthogonal to the direction given by Theta. This antiflow component is responsible for the previously predicted reduction of the directed transverse momentum around the softest point of the equation of state.

- Kaon effective mass and energy from a novel chiral SU(3) symmetric Lagrangian (1999)
- A new chiral SU(3) Lagrangian is proposed to describe the properties of kaons and antikaons in the nuclear medium, the ground state of dense matter and the kaon-nuclear interactions consistently. The saturation properties of nuclear matter are reproduced as well as the results of the Dirac-Brückner theory. After taking into account the coupling between the omega meson and the kaon, we obtain similar results for the e ective kaon and antikaon energies as calculated in the one-boson-exchange model while in our model the parameters of the kaon-nuclear interactions are constrained by the SU(3) chiral symmetry. PACS number(s): 14.40.Aq, 12.39.Fe, 21.30.Fe

- Chiral model for dense, hot and strange hadronic matter (1999)
- Introduction: Until now it is not possible to determine the equation of state (EOS) of hadronic matter from QCD. One succesfully applied alternative way to describe the hadronic world at high densities and temperatures are effective models like the RMF-models [1], where the relevant degrees of freedom are baryons and mesons instead of quarks and gluons. Since approximate chiral symmetry is an essential feature of QCD, it should be a useful concept for building and restricting e ective models. It has been shown [2,3] that effective sigma-omega models including SU(2) chiral symmetry are able to obtain a reasonable description of nuclear matter and finite nuclei. Recently [4] we have shown that an extended SU(3) × SU(3) chiral sigma-omega model is able to describe nuclear matter ground state properties, vacuum properties and finite nuclei satisfactorily. This model includes the lowest SU(3) multiplets of the baryons (octet and decuplet[5]), the spin-0 and the spin-1 mesons as the relevant degrees of freedom. Here we will discuss the predictions of this model for dense, hot, and strange hadronic matter.

- Direct emission of multiple strange baryons in ultrarelativistic heavy-ion collisions from the phase boundary (1999)
- We discuss a model for the space-time evolution of ultrarelativistic heavy-ion collisions which employs relativistic hydrodynamics within one region of the forward light-cone, and microscopic transport theory (i.e. UrQMD) in the complement. Our initial condition consists of a quark-gluon plasma which expands hydrodynamically and hadronizes. After hadronization the solution eventually changes from expansion in local equilibrium to free streaming, as determined selfconsistently by the interaction rates between the hadrons and the local expansion rate. We show that in such a scenario the inverse slopes of the mT -spectra of multiple strange baryons ( Xi,Omega) are practically una ected by the purely hadronic stage of the reaction, while the flow of p's and Lambda's increases. Moreover, we find that the rather soft transverse expansion at RHIC energies (due to a first-order phase transition) is not washed out by strong rescattering in the hadronic stage. The earlier kinetic freeze-out as compared to SPS-energies results in similar inverse slopes (of the mT -spectra of the hadrons in the final state) at RHIC and SPS energies.

- Hadronic freeze-out following a first order hadronization phase transition in ultrarelativistic heavy-ion collisions (1999)
- We analyze the hadronic freeze-out in ultra-relativistic heavy ion collisions at RHIC in a transport approach which combines hydrodynamics for the early, dense, deconfined stage of the reaction with a microscopic non-equilibrium model for the later hadronic stage at which the hydrodynamic equilibrium assumptions are not valid. With this ansatz we are able to self-consistently calculate the freeze-out of the system and determine space-time hypersurfaces for individual hadron species. The space-time domains of the freeze-out for several hadron species are found to be actually four-dimensional, and di er drastically for the individual hadrons species. Freeze-out radii distributions are similar in width for most hadron species, even though the is found to be emitted rather close to the phase boundary and shows the smallest freeze- out radii and times among all baryon species. The total lifetime of the system does not change by more than 10% when going from SPS to RHIC energies.

- Hadron yields in Au + Au / Pb + Pb at RHIC and LHC from thermalized minijets (1999)
- We calculate the yields of a variety of hadrons for RHIC and LHC energies assuming thermodynamical equilibration of the produced minijets, and using as input results from pQCD for the energy densities at midrapidity. In the calculation of the production of partons and of transverse energy one has to account for nuclear shadowing. By using two parametrizations for the gluon shadowing one derives energy densities di ering strongly in magnitude. In this publication we link those perturbatively calculated energy densities of partons via entropy conservation in an ideal fluid to the hadron multiplicities at chemical freeze-out.

- Freeze-out in hydrodynamical models in relativistic heavy ion collisions (1999)
- In continuum and fluid dynamical models, particles, which leave the system and reach the detectors, can be taken into account via freeze-out (FO) or final break-up schemes, where the frozen out particles are formed on a 3-dimensional hypersurface in space-time. Such FO descriptions are important ingredients of evaluations of two-particle correlation data, transverse-, longitudinal-, radial- and cylindrical- flow analyses, transverse momentum and transverse mass spectra and many other observables. The FO on a hypersurface is a discontinuity, where the pre FO equilibrated and interacting matter abruptly changes to non-interacting particles, showing an ideal gas type of behavior.