### Refine

#### Year of publication

- 2003 (20) (remove)

#### Keywords

- Dirac (2)
- baryon (2)
- collision (2)
- meson (2)
- Baryon (1)
- Charmed mesons (1)
- Charmed quarks (1)
- Chemikalie (1)
- Collision (1)
- Distributed software development (1)

- Strangeness dynamics in relativistic nucleus-nucleus collision (2003)
- We investigate hadron production as well as transverse hadron spectra in nucleus-nucleus collisions from 2 A.GeV to 21.3 A.TeV within two independent transport approaches (UrQMD and HSD) that are based on quark, diquark, string and hadronic degrees of freedom. The comparison to experimental data demonstrates that both approaches agree quite well with each other and with the experimental data on hadron production. The enhancement of pion production in central Au+Au (Pb+Pb) collisions relative to scaled pp collisions (the 'kink') is well described by both approaches without involving any phase transition. However, the maximum in the K+/Pi+ ratio at 20 to 30 A.GeV (the 'horn') is missed by ~ 40%. A comparison to the transverse mass spectra from pp and C+C (or Si+Si) reactions shows the reliability of the transport models for light systems. For central Au+Au (Pb+Pb) collisions at bombarding energies above ~ 5 A.GeV, however, the measured K +/- m-theta-spectra have a larger inverse slope parameter than expected from the calculations. The approximately constant slope of K+/-spectra at SPS (the 'step') is not reproduced either. Thus the pressure generated by hadronic interactions in the transport models above ~ 5 A.GeV is lower than observed in the experimental data. This finding suggests that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential and temperature - might be generated by strong interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb) collisions.

- Signatures in the Planck regime (2003)
- String theory suggests the existence of a minimum length scale. An exciting quantum mechanical implication of this feature is a modification of the uncertainty principle. In contrast to the conventional approach, this generalised uncertainty principle does not allow to resolve space time distances below the Planck length. In models with extra dimensions, which are also motivated by string theory, the Planck scale can be lowered to values accessible by ultra high energetic cosmic rays (UHECRs) and by future colliders, i.e. M f approximately equal to 1 TeV. It is demonstrated that in this novel scenario, short distance physics below 1/M f is completely cloaked by the uncertainty principle. Therefore, Planckian effects could be the final physics discovery at future colliders and in UHECRs. As an application, we predict the modifications to the e+ e- to f+ f- cross-sections.

- Re-visit the N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a probe of EoS of asymmetric nuclear matter (2003)
- The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of Isospin dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive to the form of the density dependence of the symmetry potential energy but also its strength determined by the symmetry energy coe cient. The uncertainties about the symmetry energy coe cient influence the accuracy of probing the density dependence of the symmetry energy by means of the N/Z ratio of free nucleons of neutron-rich nuclei.

- Probing the minimal length scale by precision tests of the muon g-2 (2003)
- Modifications of the gyromagnetic moment of electrons and muons due to a minimal length scale combined with a modified fundamental scale M_f are explored. Deviations from the theoretical Standard Model value for g-2 are derived. Constraints for the fundamental scale M_f are given.

- Open charm and charmonium production at RHIC (2003)
- We calculate open charm and charmonium production in Au + Au reac- tions at ps = 200 GeV within the hadron-string dynamics (HSD) transport approach employing open charm cross sections from pN and N reactions that are fitted to results from PYTHIA and scaled in magnitude to the available experimental data. Charmonium dissociation with nucleons and formed mesons to open charm (D + ¯D pairs) is included dynamically. The comover dissociation cross sections are described by a simple phase-space model including a single free parameter, i.e. an interaction strength M2 0 , that is fitted to the J/ suppression data for Pb + Pb collisions at SPS energies. As a novel feature we implement the backward channels for char- monium reproduction by D ¯D channels employing detailed balance. From our dynamical calculations we find that the charmonium recreation is com- parable to the dissociation by comoving mesons. This leads to the final result that the total J/ suppression at ps = 200 GeV as a function of centrality is slightly less than the suppression seen at SPS energies by the NA50 Collaboration, where the comover dissociation is substantial and the backward channels play no role. Furthermore, even in case that all di- rectly produced J/ mesons dissociate immediately (or are not formed as a mesonic state), a sizeable amount of charmonia is found asymptotically due to the D + ! J/ + meson channels in central collisions of Au + Au at ps = 200 GeV which, however, is lower than the J/ yield expected from f pp collis ns.

- Model dependence of lateral distribution functions of high energy cosmic ray air showers (2003)
- The influence of high and low energy hadronic models on lateral distribution functions of cosmic ray air showers for Auger energies is explored. A large variety of presently used high and low energy hadron interaction models are analysed and the resulting lateral distribution functions are compared. We show that the slope depends on both the high and low energy hadronic model used. The models are confronted with available hadron-nucleus data from accelerator experiments.

- Mass modification of D-meson in hot hadronic matter (2003)
- We evaluate the in-medium D and -meson masses in hot hadronic matter induced by interactions with the light hadron sector described in a chiral SU(3) model. The e ective Lagrangian approach is generalized to SU(4) to include charmed mesons. We find that the D-mass drops substantially at finite temperatures and densities, which open the channels of the decay of the charmonium states ( 2, c, J/ ) to D pairs in the thermal medium. The e ects of vacuum polarisations from the baryon sector on the medium modification of the D-meson mass relative to those obtained in the mean field approximation are investigated. The results of the present work are compared to calculations based on the QCD sum-rule approach, the quark-meson coupling model, chiral perturbation theory, as well as to studies of quarkonium dissociation using heavy quark potential from lattice QCD.

- In-medium vector meson masses in a chiral SU(3) model (2003)
- A significant drop of the vector meson masses in nuclear matter is observed in a chiral SU(3) model due to the e ects of the baryon Dirac sea. This is taken into account through the summation of baryonic tadpole diagrams in the relativistic Hartree approximation. The appreciable decrease of the in-medium vector meson masses is due to the vacuum polarisation e ects from the nucleon sector and is not observed in the mean field approximation.

- Hydrodynamics near a chiral critical point (2003)
- We introduce a model for the real-time evolution of a relativistic fluid of quarks coupled to non-equilibrium dynamics of the long wavelength (classical) modes of the chiral condensate. We solve the equations of motion numerically in 3+1 spacetime dimensions. Starting the evolution at high temperature in the symmetric phase, we study dynamical trajectories that either cross the line of first-order phase transitions or evolve through its critical endpoint. For those cases, we predict the behavior of the azimuthal momentum asymmetry for highenergy heavy-ion collisions at nonzero impact parameter.

- GEANT4 : a simulation toolkit (2003)
- Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 23