### Refine

#### Keywords

- Phase transitions in quark-gluon matter (1986)
- If the local color symmetry in a quark-gluon matter is broken, the expectation value of the gluon field 〈Aμa(x)〉 may be different from zero. Such a gluon-condensed phase has been found in mean field approximation. The gluon-condensed phase is characterized by a static, periodic chromomagnetic field, which is coupled to a periodic spin-color density distribution of quarks and antiquarks. Transitions of first and second order type have been found between the gluon-condensed and normal phases, the latter characterized by the vanishing value of the mean gluon field.

- Three-component fluid dynamics for the description of energetic heavy-ion reactions (1982)
- The nucleons taking part in heavy ion reaction are considered as a three-component fluid. The first and second components correspond to the nucleons of the target and the projectile, while the thermalized nucleons produced in the course of the collision belong to the third component. Making use of the Boltzmann equation, hydrodynamical equations are derived. An equation of state for anisotropic nuclear matter obtained from a field theoretical model in mean field approximation is applied in a one dimensional version of the three-component fluid model. The speed of thermalization is analyzed and compared to the results of cascade and kinetic models. NUCLEAR REACTIONS Relativistic heavy-ion reactions, hydrodynamic description.