### Refine

#### Year of publication

#### Keywords

- Kollisionen schwerer Ionen (4)
- heavy ion collisions (3)
- Meson (2)
- Nambu Jona-Lasinio Modell (2)
- Nambu Jona-Lasinio model (2)
- Quark Materie (2)
- antibaryon (2)
- meson (2)
- quark matter (2)
- Bose (1)

#### Institute

- Hydrodynamical modeling of the deconfinement phase transition and explosive hadronization (2007)
- Dynamics of relativistic heavy-ion collisions is investigated on the basis of a simple (1+1)-dimensional hydrodynamical model in light-cone coordinates. The main emphasis is put on studying sensitivity of the dynamics and observables to the equation of state and initial conditions. Low sensitivity of pion rapidity spectra to the presence of the phase transition is demonstrated, and some inconsistencies of the equilibrium scenario are pointed out. Possible non-equilibrium effects are discussed, in particular, a possibility of an explosive disintegration of the deconfined phase into quark-gluon droplets. Simple estimates show that the characteristic droplet size should decrease with increasing the collective expansion rate. These droplets will hadronize individually by emitting hadrons from the surface. This scenario should reveal itself by strong non-statistical fluctuations of observables. Critical Point and Onset of Deconfinement 4th International Workshop July 9-13 2007 GSI Darmstadt,Germany

- Longitudinal fluid-dynamics for ultrarelativistic heavy-ion collisions (2006)
- We develop a 1+1 dimensional hydrodynamical model for central heavy-ion collisions at ultrarelativistic energies. Deviations from Bjorken's scaling are taken into account by implementing finite-size profiles for the initial energy density. The calculated rapidity distributions of pions, kaons and antiprotons in central Au+Au collisions at the c.m. energy 200 AGeV are compared with experimental data of the BRAHMS Collaboration. The sensitivity of the results to the choice of the equation of state, the parameters of initial state and the freeze-out conditions is investigated. The best fit of experimental data is obtained for a soft equation of state and Gaussian-like initial profiles of the energy density.

- Mach shocks induced by partonic jets in expanding quark-gluon plasma (2005)
- We study Mach shocks generated by fast partonic jets propagating through a deconfined strongly-interacting matter. Our main goal is to take into account different types of collective motion during the formation and evolution of this matter. We predict a significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies as compared to the case of jet propagation in a static medium. The observed broadening of the near-side two-particle correlations in pseudorapidity space is explained by the Bjorken-like longitudinal expansion. Three-particle correlation measurements are proposed for a more detailed study of the Mach shock waves.

- Antibaryons bound in nuclei (2004)
- We study the possibility of producing a new kind of nuclear systems which in addition to ordinary nucleons contain a few antibaryons (B = p, , etc.). The properties of such systems are described within the relativistic mean field model by employing G parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from 4He to 208Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus resulting in a significant increase of its binding energy and local compression. Noticeable e ects remain even after the antibaryon coupling constants are reduced by factor 3 4 compared to G parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that due to significant reduction of the reaction Q values, the in medium annihilation rates should be strongly suppressed leading to relatively long lived antibaryon nucleus systems. Multi nucleon annihilation channels are analyzed too. We have also estimated formation probabilities of bound B + A systems in pA reactions and have found that their observation will be feasible at the future GSI antiproton facility. Several observable signatures are proposed. The possibility of producing multi quark antiquark clusters is discussed. PACS numbers: 25.43.+t, 21.10.-k, 21.30.Fe, 21.80.+a

- Enhanced binding and cold compression of nuclei due to admixture of antibaryons (2002)
- We discuss the possibility of producing a new kind of nuclear system by putting a few antibaryons inside ordinary nuclei. The structure of such systems is calculated within the relativistic mean field model assuming that the nucleon and antinucleon potentials are related by the G parity transformation. The presence of antinucleons leads to decreasing vector potential and increasing scalar potential for the nucleons. As a result, a strongly bound system of high density is formed. Due to the significant reduction of the available phase space the annihilation probability might be strongly suppressed in such systems.

- Constraints on possible phase transitions above the nuclear saturation density (2002)
- We compare different models for hadronic and quark phases of cold baryon rich matter in an attempt to find a deconfinement phase transition between them. For the hadronic phase we consider Walecka type mean field models which describe well the nuclear saturation properties. We also use the variational chain model which takes into account correlation effects. For the quark phase we consider the MIT bag model, the Nambu Jona-Lasinio and the massive quasiparticle models. By comparing pressure as a function of baryon chemical potential we find that crossings of hadronic and quark branches are possible only in some exceptional cases while for most realistic parameter sets these branches do not cross at all. Moreover, the chiral phase transition, often discussed within the framework of QCD motivated models, lies in the region where the quark phases are unstable with respect to the hadronic phase. We discuss possible physical consequences of these findings.

- Catastrophic rearrangement of a compact star due to the quark core formation (2002)
- We study properties of compact stars with the deconfinement phase transition in their interiors. The equation of state of cold baryon-rich matter is constructed by combining a relativistic mean-field model for the hadronic phase and the MIT Bag model for the deconfined phase. In a narrow parameter range two sequences of compact stars (twin stars), which differ by the size of the quark core, have been found. We demonstrate the possibility of a rapid transition between the twin stars with the energy release of about 10 ^52 ergs. This transition should be accompanied by the prompt neutrino burst and the delayed gamma-ray burst.

- Strange quark stars within the Nambu-Jona-Lasinio model (2001)
- We investigate the properties of charge neutral equilibrium cold quark matter within the Nambu Jona-Lasinio model. The calculations are carried out for di erent ratios of coupling constants characterizing the vector and scalar 4 fermion interaction, xi = GV /GS. It is shown that for xi < 0.4 matter is self bound and for xi < 0.65 it has a first order phase transition of the liquid gas type. The Gibbs conditions in the mixed phase are applied for the case of two chemical potentials associated with the baryon number and electric charge. The characteristics of the quark stars are calculated for xi = 0, 0.5 and 1. It is found that the phase transition leads to a strong density variation at the surface of these stars. For xi = 1 the properties of quark stars show behaviors typical for neutron stars. At >< 0.4 the stars near to the maximum mass have a large admixture of strange quarks in their interiors. PACS number: 14.65.-q, 26.60.+c, 97.10.-q

- Unusual bound states of quark matter within the NJL model (2000)
- Properties of dense quark matter in and out of chemical equilibrium are studied within the SU(3) Nambu Jona-Lasinio model. In addition to the 4 fermion scalar and vector terms the model includes also the 6 fermion flavour mixing interaction. First we study a novel form of deconfined matter, meso-matter, which is composed of equal number of quarks and antiquarks. It can be thought of as a strongly compressed meson gas where mesons are melted into their elementary constituents, quarks and antiquarks. Strongly bound states in this quark antiquark matter are predicted for all flavour combinations of qq pairs. The maximum binding energy reaches up to 180 MeV per qq pair for mixtures with about 70% of strange (s¯s) pairs. Equilibrated baryon rich quark matter with various flavour compositions is also studied. In this case only shallow bound states appear in systems with a significant admixture(about 40%) of strange quarks (strangelets). Their binding energies are quite sensitive to the relative strengths of scalar and vector interactions. The common property of all these bound states is that they appear at high particle densities when the chiral symmetry is nearly restored. Thermal properties of meso-matter as well as chemically equilibrated strange quark matter are also investigated. Possible decay modes of these bound states are discussed.

- Strange quark matter within the Nambu-Jona-Lasinio model (2000)
- Equation of state of baryon rich quark matter is studied within the SU(3) Nambu Jona-Lasinio model with flavour mixing interaction. Possible bound states (strangelets) and chiral phase transitions in this matter are investigated at various values of strangeness fraction rs. The model predictions are very sensitive to the ratio of vector and scalar coupling constants, ¾ = GV /GS. At ¾ = 0.5 and zero temperature the maximum binding energy (about 15 MeV per baryon) takes place at rs C 0.4. Such strangelets are negatively charged and have typical life times < 10 7 s. The calculations are carried out also at finite temperatures. They show that bound states exist up to temperatures of about 15 MeV. The model predicts a first order chiral phase transition at finite baryon densities. The parameters of this phase transition are calculated as a function of rs.