### Refine

#### Keywords

- quark matter (2) (remove)

- Unusual bound states of quark matter within the NJL model (2000)
- Properties of dense quark matter in and out of chemical equilibrium are studied within the SU(3) Nambu Jona-Lasinio model. In addition to the 4 fermion scalar and vector terms the model includes also the 6 fermion flavour mixing interaction. First we study a novel form of deconfined matter, meso-matter, which is composed of equal number of quarks and antiquarks. It can be thought of as a strongly compressed meson gas where mesons are melted into their elementary constituents, quarks and antiquarks. Strongly bound states in this quark antiquark matter are predicted for all flavour combinations of qq pairs. The maximum binding energy reaches up to 180 MeV per qq pair for mixtures with about 70% of strange (s¯s) pairs. Equilibrated baryon rich quark matter with various flavour compositions is also studied. In this case only shallow bound states appear in systems with a significant admixture(about 40%) of strange quarks (strangelets). Their binding energies are quite sensitive to the relative strengths of scalar and vector interactions. The common property of all these bound states is that they appear at high particle densities when the chiral symmetry is nearly restored. Thermal properties of meso-matter as well as chemically equilibrated strange quark matter are also investigated. Possible decay modes of these bound states are discussed.

- Strange quark matter within the Nambu-Jona-Lasinio model (2000)
- Equation of state of baryon rich quark matter is studied within the SU(3) Nambu Jona-Lasinio model with flavour mixing interaction. Possible bound states (strangelets) and chiral phase transitions in this matter are investigated at various values of strangeness fraction rs. The model predictions are very sensitive to the ratio of vector and scalar coupling constants, ¾ = GV /GS. At ¾ = 0.5 and zero temperature the maximum binding energy (about 15 MeV per baryon) takes place at rs C 0.4. Such strangelets are negatively charged and have typical life times < 10 7 s. The calculations are carried out also at finite temperatures. They show that bound states exist up to temperatures of about 15 MeV. The model predicts a first order chiral phase transition at finite baryon densities. The parameters of this phase transition are calculated as a function of rs.