Refine
Keywords
- Aedes aegypti (1)
- Aedes albopictus (1)
- Culicidae (1)
- Diptera (1)
- dengue vector (1)
- egg sampling (1)
- epidemics (1)
- hatching (1)
- international transport (1)
- monitoring (1)
Institute
- Spatiotemporal distribution of dengue and chikungunya in the Hindu Kush Himalayan region: a systematic review (2020)
- The risk of increasing dengue (DEN) and chikungunya (CHIK) epidemics impacts 240 million people, health systems, and the economy in the Hindu Kush Himalayan (HKH) region. The aim of this systematic review is to monitor trends in the distribution and spread of DEN/CHIK over time and geographically for future reliable vector and disease control in the HKH region. We conducted a systematic review of the literature on the spatiotemporal distribution of DEN/CHIK in HKH published up to 23 January 2020, following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. In total, we found 61 articles that focused on the spatial and temporal distribution of 72,715 DEN and 2334 CHIK cases in the HKH region from 1951 to 2020. DEN incidence occurs in seven HKH countries, i.e., India, Nepal, Bhutan, Pakistan, Bangladesh, Afghanistan, and Myanmar, and CHIK occurs in four HKH countries, i.e., India, Nepal, Bhutan, and Myanmar, out of eight HKH countries. DEN is highly seasonal and starts with the onset of the monsoon (July in India and June in Nepal) and with the onset of spring (May in Bhutan) and peaks in the postmonsoon season (September to November). This current trend of increasing numbers of both diseases in many countries of the HKH region requires coordination of response efforts to prevent and control the future expansion of those vector-borne diseases to nonendemic areas, across national borders.
- STtech: sampling and transport techniques for Aedes eggs during a sampling campaign in a low-resource setting (2021)
- Container-breeding Aedes spp. (Diptera: Culicidae) mosquitoes can be surveilled at low cost using ovitraps. Hence, this method is a preferred monitoring approach of dengue vectors in low-resource settings. The ovitraps consist of a cup filled with water and an oviposition substrate for female mosquitoes. The attractiveness of the substrates for female mosquitoes can greatly differ due to differences in texture, color, and smell of the materials used. We compare four oviposition substrates, which are all low priced, easy to transport, and easy to purchase, to maximize the success of Aedes egg sampling. Sampled egg material is often reared to adulthood for further taxonomic identification and transported to (international) laboratories for specialized vector research. Here we introduce a transport technique for sampled eggs. In addition, we explored the impact of international transport by means of a bilateral hatching experiment in Nepal, the country of origin, and in Germany, in a laboratory specialized in ecophysiological research. The best low-cost oviposition substrate for the dengue vectors Aedes albopictus (Skuse) and Aedes aegypti (L.) was found to be a white cotton sheet. The introduced transport technique of sampled eggs is easy to build from laboratory and household materials and ensures good transport conditions (i.e., temperature and relative humidity). Even under good temperature (17.4–31.0 °C) and humidity conditions (58.9–94.2%), hatching success of eggs was found to be reduced after international transport to Germany when compared to the hatching success of eggs in Nepal. We postulate that air pressure during international transport may have reduced the hatching success and strongly recommend pressure-regulated transport boxes for egg transport via airplane. As the proposed operation procedure is useful in assisting the monitoring of Ae. albopictus and Ae. aegypti in low-resource settings, Aedes researchers are encouraged to follow it for the sampling and transport of Aedes eggs.