- Study of strange matter production in the heavy ion collisions at NUCLOTRON (2012)
- It is proposed to install an experimental setup in the fixed-target hall of the Nuclotron with the final goal to perform a research program focused on the production of strange matter in heavyion collisions at beam energies between 2 and 6 A GeV. The basic setup will comprise a large acceptance dipole magnet with inner tracking detector modules based on double-sided Silicon micro-strip sensors and GEMs. The outer tracking will be based on the drift chambers and straw tube detector. Particle identification will be based on the time-of-flight measurements. This setup will be sufficient perform a comprehensive study of strangeness production in heavy-ion collisions, including multi-strange hyperons, multi-strange hypernuclei, and exotic multi-strange heavy objects. These pioneering measurements would provide the first data on the production of these particles in heavy-ion collisions at Nuclotron beam energies, and would open an avenue to explore the third (strangeness) axis of the nuclear chart. The extension of the experimental program is related with the study of in-medium effects for vector mesons decaying in hadronic modes. The studies of the NN and NA reactions for the reference is assumed.
- New approaches for data reconstruction and analysis in the CBM experiment (2016)
- The future heavy-ion experiment CBM (FAIR/GSI, Darmstadt, Germany) will focus on measurement of very rare probes at interaction rates up to 10 MHz with data flow of up to 1 TB/s. The beam will provide free stream of beam particles without bunch structure. That requires full online event reconstruction and selection not only in space, but also in time, so-called 4D event building and selection. The FLES (First-Level Event Selection) reconstruction and selection package consists of several modules: track finding, track fitting, short-lived particles finding, event building and event selection. A time-slice is reconstructed in parallel between cores within a same CPU, thus minimizing the communication between CPUs. After all tracks are found and fitted in 4D, they are collected into clusters of tracks originated from common primary vertices, which then are fitted, thus identifying 4D interaction points registered within the time-slice. Secondary tracks are associated with primary vertices according to their estimated production time. After that, short-lived particles are found and the full event building process is finished. The last stage of the FLES package is the selection of events according to the requested trigger signatures.
- Online event reconstruction in the CBM experiment at FAIR (2018)
- Targeting for rare observables, the CBM experiment will operate at high interaction rates of up to 10 MHz, which is unprecedented in heavy-ion experiments so far. It requires a novel free-streaming readout system and a new concept of data processing. The huge data rates of the CBM experiment will be reduced online to the recordable rate before saving the data to the mass storage. Full collision reconstruction and selection will be performed online in a dedicated processor farm. In order to make an efficient event selection online a clean sample of particles has to be provided by the reconstruction package called First Level Event Selection (FLES). The FLES reconstruction and selection package consists of several modules: track finding, track fitting, event building, short-lived particles finding, and event selection. Since detector measurements contain also time information, the event building is done at all stages of the reconstruction process. The input data are distributed within the FLES farm in a form of time-slices. A time-slice is reconstructed in parallel between processor cores. After all tracks of the whole time-slice are found and fitted, they are collected into clusters of tracks originated from common primary vertices, which then are fitted, thus identifying the interaction points. Secondary tracks are associated with primary vertices according to their estimated production time. After that short-lived particles are found and the full event building process is finished. The last stage of the FLES package is a selection of events according to the requested trigger signatures. The event reconstruction procedure and the results of its application to simulated collisions in the CBM detector setup are presented and discussed in detail.
- Production of K∗(892)0 and ϕ(1020) in p–Pb collisions at √sNN = 5.02 TeV (2016)
- The production of K∗(892)0 and ϕ(1020) mesons has been measured in p–Pb collisions at √sNN = 5.02 TeV. K∗0 and ϕ are reconstructed via their decay into charged hadrons with the ALICE detector in the rapidity range - 0.5 < y < 0. The transverse momentum spectra, measured as a function of the multiplicity, have a pT range from 0 to 15 GeV/c for K∗0 and from 0.3 to 21 GeV/c for ϕ. Integrated yields, mean transverse momenta and particle ratios are reported and compared with results in pp collisions at √s = 7 TeV and Pb–Pb collisions at √sNN = 2.76 TeV. In Pb–Pb and p–Pb collisions, K∗0 and ϕ probe the hadronic phase of the system and contribute to the study of particle formation mechanisms by comparison with other identified hadrons. For this purpose, the mean transverse momenta and the differential proton-to-ϕ ratio are discussed as a function of the multiplicity of the event. The short-lived K∗0 is measured to investigate re-scattering effects, believed to be related to the size of the system and to the lifetime of the hadronic phase.
- Measurement of ϒ(1S) elliptic flow at forward rapidity in Pb-Pb collisions at √sNN = 5.02 TeV (2019)
- The first measurement of the ϒ(1S) elliptic flow coefficient (v2) is performed at forward rapidity (2.5 < y < 4) in Pb–Pb collisions at √sNN = 5.02 TeV with the ALICE detector at the LHC. The results are obtained with the scalar product method and are reported as a function of transverse momentum (pT) up to 15 GeV/c in the 5%–60% centrality interval. The measured Υ(1S)v2 is consistent with 0 and with the small positive values predicted by transport models within uncertainties. The v2 coefficient in 2 < pT < 15 GeV/c is lower than that of inclusive J/ψ mesons in the same pT interval by 2.6 standard deviations. These results, combined with earlier suppression measurements, are in agreement with a scenario in which the Υ(1S) production in Pb–Pb collisions at LHC energies is dominated by dissociation limited to the early stage of the collision, whereas in the J/ψ case there is substantial experimental evidence of an additional regeneration component.