### Refine

#### Document Type

- Article (4) (remove)

- Multifragmentation, fragment flow, and the nuclear equation of state (1989)
- The quantum molecular dynamic method is used to study multifragmentation and fragment flow and their dependence on in-medium cross sections, momentum dependent interactions, and the nuclear equation of state, for collisions of 197Au+197Au and 93Nb+93Nb in the bombarding energy regime from 100 to 800A MeV. Time and impact parameter dependence of the fragment formation and their implications for the conjectured liquid-vapor phase transition are investigated. We find that the inclusive fragment mass distribution is independent of the equation of state and exhibits a power-law behavior Y(A)∼A-τ with an exponent τ≊-2.3. True multifragmentation events are found in central collisions for energies Elab∼30–200 MeV/nucleon. The associated light fragment (d,t,α) to proton ratios increase with the multiplicity of charged particles and decrease with energy, in agreement with recent experiments. The calculated absolute charged particle multiplicities, the multiplicities of intermediate mass (A>4) fragments, and their respective rapidity distributions do compare well with recent 4π data, but are quite insensitive to the equation of state. On the other hand, these quantities depend sensitively on the nucleon-nucleon scattering cross section, and can be used to determine σ experimentally. The transverse momentum flow of the complex fragments increases with the stiffness of the equation of state. Reduced (in-medium) n-n scattering cross sections reduce the fragment flow. Momentum dependent interactions increase the fragment flow. It is shown that the measured fragment flow at 200A MeV can be reproduced in the model. We find that also the increase of the px/A values with the fragment mass is in agreement with experiments. The calculated fragment flow is too small as compared to the plastic ball data, if a soft equation of state with in-medium corrections (momentum dependent interactions plus reduced cross sections) is employed. An alternative, most intriguing resolution of the puzzle about the stiffness of the equation of state could be an increase of the scattering cross sections due to precritical scattering in the vicinity of a phase transition.

- Comparison of nuclear transport models with 800A-MeV La + La data (1989)
- Nuclear transport models including density- and momentum-dependent mean-field effects are compared to intranuclear-cascade models and tested on recent data on inclusive p-like cross sections for 800A-MeV La+La. We find a remarkable agreement between most model calculations but a systematic disagreement with the measured yield at 20°, possibly indicating a need for modification of nuclear transport properties at high densities.

- The role of quantum effects and nonequilibrium transport coefficients for relativistic heavy ion collisions (1992)
- Stopping power and thermalization in relativistic heavy ion collisions is investigated employing the quantum molecular dynamics approach. For heavy systems stopping of the incoming nuclei is predicted, independent of the energy. The influence of the quantum effects and their increasing importance at low energies, is demonstrated by inspection of the mean free path of the nucleons and the n-n collision number. Classical models, which neglect these effects, overestimate the stopping and the thermalization as well as the collective flow and squeeze out. The sensitivity of the transverse and longitudinal momentum transfer to the in-medium cross section and to the pressure is investigated.