### Refine

#### Year of publication

#### Keywords

- Kollisionen schwerer Ionen (1)
- OMD (1)
- QMD (1)
- Quantendynamik (1)
- Quantum Molecular Dynamics (1)
- heavy ion colliders (1)

- Signatures of dense hadronic matter in ultrarelativistic heavy ion reactions (1996)
- The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Dilepton spectra are calculated with and without shifting the rho pole. Except for S+Au collisions our calculations reproduce the CERES data.

- Microscopic calculations of stopping and flow from 160AMeV to 160AGeV (1996)
- The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Effects of a density dependent pole of the rho-meson propagator on dilepton spectra are studied for different systems and centralities at CERN energies.

- Multifragmentation, fragment flow, and the nuclear equation of state (1989)
- The quantum molecular dynamic method is used to study multifragmentation and fragment flow and their dependence on in-medium cross sections, momentum dependent interactions, and the nuclear equation of state, for collisions of 197Au+197Au and 93Nb+93Nb in the bombarding energy regime from 100 to 800A MeV. Time and impact parameter dependence of the fragment formation and their implications for the conjectured liquid-vapor phase transition are investigated. We find that the inclusive fragment mass distribution is independent of the equation of state and exhibits a power-law behavior Y(A)∼A-τ with an exponent τ≊-2.3. True multifragmentation events are found in central collisions for energies Elab∼30–200 MeV/nucleon. The associated light fragment (d,t,α) to proton ratios increase with the multiplicity of charged particles and decrease with energy, in agreement with recent experiments. The calculated absolute charged particle multiplicities, the multiplicities of intermediate mass (A>4) fragments, and their respective rapidity distributions do compare well with recent 4π data, but are quite insensitive to the equation of state. On the other hand, these quantities depend sensitively on the nucleon-nucleon scattering cross section, and can be used to determine σ experimentally. The transverse momentum flow of the complex fragments increases with the stiffness of the equation of state. Reduced (in-medium) n-n scattering cross sections reduce the fragment flow. Momentum dependent interactions increase the fragment flow. It is shown that the measured fragment flow at 200A MeV can be reproduced in the model. We find that also the increase of the px/A values with the fragment mass is in agreement with experiments. The calculated fragment flow is too small as compared to the plastic ball data, if a soft equation of state with in-medium corrections (momentum dependent interactions plus reduced cross sections) is employed. An alternative, most intriguing resolution of the puzzle about the stiffness of the equation of state could be an increase of the scattering cross sections due to precritical scattering in the vicinity of a phase transition.

- A micro-canonical description of hadron production in proton-proton collisions (2003)
- A micro-canonical treatment is used to study particle production in pp collisions. First this micro-canonical treatment is compared to some canonical ones. Then proton, antiproton and pion 4 pi multiplicities from proton-proton collisions at various center of mass energies are used to fix the micro-canonical parameters (E) and (V). The dependences of the micro-canonical parameters on the collision energy are parameterised for the further study of pp reactions with this micro-canonical treatment.

- Micro-canonical hadron production in pp collisions (2003)
- We apply a microcanonical statistical model to investigate hadron production in pp collisions. The parameters of the model are the energy E and the volume V of the system, which we determine via fitting the average multiplicity of charged pions, protons and antiprotons in pp collisions at different collision energies. We then make predictions of mean multiplicities and mean transverse momenta of all identified hadrons. Our predictions on nonstrange hadrons are in good agreement with the data, the mean transverse momenta of strange hadron as well. However, the mean multiplicities of strange hadrons are overpredicted. This agrees with canonical and grandcanonical studies, where a strange suppression factor is needed. We also investigate the influence of event-by-event fluctuations of the E parameter.

- Transport theories for heavy ion collisions in the 1 AGeV regime (2004)
- We compare multiplicities as well as rapidity and transverse momentum distributions of protons, pions and kaons calculated within presently available transport approaches for heavy ion collisions around 1 AGeV. For this purpose, three reactions have been selected: Au+Au at 1 and 1.48 AGeV and Ni+Ni at 1.93 AGeV.

- Modelling the many-body dynamics of heavy ion collisions (1997)
- Basic problems of the semiclassical microscopic modelling of strongly interacting systems are discussed within the framework of Quantum Molecular Dynamics (QMD). This model allows to study the influence of several types of nucleonic interactions on a large variety of observables and phenomena occur- ring in heavy ion collisions at relativistic energies. It is shown that the same predictions can be obtained with several numerically completely di erent and independently written programs as far as the same model parameters are employed and the same basic approximations are made. Many observ- ables are robust against variations of the details of the model assumptions used. Some of the physical results, however, depend also on rather technical parameters like the preparation of the initial configuration in phase space. This crucial problem is connected with the description of the ground state of single nuclei, which di ers among the various approaches. An outlook to an improved molecular dynamics scheme for heavy ion collisions is given.

- Subthreshold kaons would reveal density isomers (1994)
- If density isomers exist they can be detected by measuring the excitation function of subthreshold kaon production. When the system reaches the density where the density isomer has influence on the equation of state (which depends on the beam energy and on the optical potential), we observe a jump in the cross section of the kaons whereas other observables change little. Above threshold Λ¯’s or p¯’s may be used to continue the search. This is the result of microscopic Boltzman-Uehling-Uhlenbeck calculations.

- Multifragmentation near the threshold (1991)
- We investigate the onset of multifragmentation employing an improved version of the N-body ‘‘quantum’’ molecular-dynamics approach. We study in detail the reaction 18O+197Au at 84 MeV/nucleon and find good agreement between the calculated results and the data for the double-differential proton cross section, the mass yield, the multiplicity, the kinetic energy of the fragments, and even for the kinematic correlations between intermediate mass fragments (IMF’s), which have been measured in this experiment for the first time. We observe a strong correlation between the impact parameter and both the size of the target remnant as well as the average proton multiplicity. Hence both observables can be used to determine the impact parameter experimentally. The IMF’s come from the most central collisions. The calculations confirm the experimental result that they are not emitted from an equilibrated system. Although the inclusive energy spectra look thermal, we cannot identify an impact parameter-independent isotropically emitting source. Even in central collisions global equilibrium is not observed. We find that multifragment emission at this bombarding energy is caused by a process very similar to that proposed in the macroscopic cold multifragmentation model. Thus it has a different origin than at beam energies around 1 GeV/nucleon, although the mass yield has an almost identical slope.

- The role of quantum effects and nonequilibrium transport coefficients for relativistic heavy ion collisions (1992)
- Stopping power and thermalization in relativistic heavy ion collisions is investigated employing the quantum molecular dynamics approach. For heavy systems stopping of the incoming nuclei is predicted, independent of the energy. The influence of the quantum effects and their increasing importance at low energies, is demonstrated by inspection of the mean free path of the nucleons and the n-n collision number. Classical models, which neglect these effects, overestimate the stopping and the thermalization as well as the collective flow and squeeze out. The sensitivity of the transverse and longitudinal momentum transfer to the in-medium cross section and to the pressure is investigated.