### Refine

#### Year of publication

#### Document Type

- Preprint (16) (remove)

#### Keywords

- MEMOs (2)
- hadronic matter (2)
- quark gluon plasma (2)
- Baryon (1)
- D-meson spectral density (1)
- DN interaction (1)
- Dichte (1)
- Elementarteilchen (1)
- Elementary particle (1)
- Hadron (1)

#### Institute

- Physik (16) (remove)

- Chiral Lagrangian for strange hadronic matter (1997)
- A generalized Lagrangian for the description of hadronic matter based on the linear SU(3)L × SU(3)R -model is proposed. Besides the baryon octet, the spin-0 and spin-1 nonets, a gluon condensate associated with broken scale invariance is incorporated. The observed values for the vacuum masses of the baryons and mesons are reproduced. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation of state. We discuss the di culties and possibilities to construct a chiral invariant baryon-meson interaction that leads to a realistic equation of state. It is found that a coupling of the strange condensate to nucleons is needed to describe the hyperon potentials correctly. The effective baryon masses and the appearance of an abnormal phase of nearly massless nucleons at high densities are examined. A nonlinear realization of chiral symmetry is considered, to retain a Yukawa-type baryon-meson interaction and to establish a connection to the Walecka-model.

- Nuclei in a chiral SU(3) model (1998)
- Nuclei can be described satisfactorily in a nonlinear chiral SU(3)-framework, even with standard potentials of the linearmodel. The condensate value of the strange scalar meson is found to be important for the properties of nuclei even without adding hyperons. By neglecting terms which couple the strange to the nonstrange condensate one can reduce the model to a Walecka model structure embedded in SU(3). We discuss inherent problems with chiral SU(3) models regarding hyperon optical potentials.

- Chiral model for dense, hot and strange hadronic matter (1999)
- Introduction: Until now it is not possible to determine the equation of state (EOS) of hadronic matter from QCD. One succesfully applied alternative way to describe the hadronic world at high densities and temperatures are effective models like the RMF-models [1], where the relevant degrees of freedom are baryons and mesons instead of quarks and gluons. Since approximate chiral symmetry is an essential feature of QCD, it should be a useful concept for building and restricting e ective models. It has been shown [2,3] that effective sigma-omega models including SU(2) chiral symmetry are able to obtain a reasonable description of nuclear matter and finite nuclei. Recently [4] we have shown that an extended SU(3) × SU(3) chiral sigma-omega model is able to describe nuclear matter ground state properties, vacuum properties and finite nuclei satisfactorily. This model includes the lowest SU(3) multiplets of the baryons (octet and decuplet[5]), the spin-0 and the spin-1 mesons as the relevant degrees of freedom. Here we will discuss the predictions of this model for dense, hot, and strange hadronic matter.

- Hadrons in dense resonance matter: a chiral SU(3) approach (2000)
- A nonlinear chiral SU(3) approach including the spin 3 2 decuplet is developed to describe dense matter. The coupling constants of the baryon resonances to the scalar mesons are determined from the decuplet vacuum masses and SU(3) symmetry relations. Di erent methods of mass generation show significant differences in the properties of the spin- 3 2 particles and in the nuclear equation of state

- Kaons and antikaons in hot and dense hadronic matter (2004)
- Abstract: The medium modification of kaon and antikaon masses, compatible with low energy KN scattering data, are studied in a chiral SU(3) model. The mutual interactions with baryons in hot hadronic matter and the e ects from the baryonic Dirac sea on the K( ¯K ) masses are examined. The in-medium masses from the chiral SU(3) e ective model are compared to those from chiral perturbation theory. Furthermore, the influence of these in-medium e ects on kaon rapidity distributions and transverse energy spectra as well as the K, ¯K flow pattern in heavy-ion collision experiments at 1.5 to 2 A·GeV are investigated within the HSD transport approach. Detailed predictions on the transverse momentum and rapidity dependence of directed flow v1 and the elliptic flow v2 are provided for Ni+Ni at 1.93 A·GeV within the various models, that can be used to determine the in-medium K± properties from the experimental side in the near future.

- The outer crust of non-accreting cold neutron stars (2006)
- The properties of the outer crust of non-accreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables updating in particular the classic work of Baym, Pethick and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 is used and a thorough comparison of many modern theoretical nuclear models, relativistic and non-relativistic ones, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared in order to check their differences concerning the neutron dripline, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the dripline in the outer crust of non-accreting cold neutron stars.

- In-medium properties of D-mesons at FAIR (2006)
- We obtain the D-meson spectral density at finite temperature for the conditions of density and temperature expected at FAIR. We perform a self-consistent coupled-channel calculation taking, as a bare interaction, a separable potential model. The Lambda_c (2593) resonance is generated dynamically. We observe that the D-meson spectral density develops a sizeable width while the quasiparticle peak stays close to the free position. The consequences for the D-meson production at FAIR are discussed.

- Open-charm enhancement at FAIR? (2006)
- We have calculated the D-meson spectral density at finite temperature within a self-consistent coupled-channel approach that generates dynamically the Lambda_c (2593) resonance. We find a small mass shift for the D-meson in this hot and dense medium while the spectral density develops a sizeable width. The reduced attraction felt by the D-meson in hot and dense matter together with the large width observed have important consequences for the D-meson production in the future CBM experiment at FAIR.

- Mass modification of D-meson in hot hadronic matter (2003)
- We evaluate the in-medium D and -meson masses in hot hadronic matter induced by interactions with the light hadron sector described in a chiral SU(3) model. The e ective Lagrangian approach is generalized to SU(4) to include charmed mesons. We find that the D-mass drops substantially at finite temperatures and densities, which open the channels of the decay of the charmonium states ( 2, c, J/ ) to D pairs in the thermal medium. The e ects of vacuum polarisations from the baryon sector on the medium modification of the D-meson mass relative to those obtained in the mean field approximation are investigated. The results of the present work are compared to calculations based on the QCD sum-rule approach, the quark-meson coupling model, chiral perturbation theory, as well as to studies of quarkonium dissociation using heavy quark potential from lattice QCD.

- D-mesons: In-medium effects at FAIR (2005)
- The D-meson spectral density at finite temperature is obtained within a self-consistent coupled-channel approach. For the bare meson-baryon interaction, a separable potential is taken, whose parameters are fixed by the position and width of the Lambda_c (2593) resonance. The quasiparticle peak stays close to the free D-meson mass, indicating a small change in the effective mass for finite density and temperature. However, the considerable width of the spectral density implies physics beyond the quasiparticle approach. Our results indicate that the medium modifications for the D-mesons in nucleus-nucleus collisions at FAIR (GSI) will be dominantly on the width and not, as previously expected, on the mass.