Refine
Document Type
- Conference Proceeding (7)
- Article (6)
- Doctoral Thesis (1)
Keywords
- binary neutron star merger (2)
- Boltzmann-Gleichung (1)
- FAIR (1)
- GSI (1)
- Hadron (1)
- QCD (1)
- QCD equation of state (1)
- QCD phase diagram (1)
- Quantenchromodynamik (1)
- Quark <Physik> (1)
Institute
- Phase structure of strongly interacting matter and simulations of heavy-ion collisions using a quark-hadron model (2010)
- Abstract We consider the phase structure of hadronic and hadron-quark models at finite temperature and density. The basis for the hadronic part is an extension of a flavor-SU(3) ? ? ? model. We study the effect on the phase diagram by adding additional hadronic resonances to the model. With the resulting equation of state we investigate heavy-ion c... collisions using hydrodynamical simulations. In a combined approach we include quarks and the Polyakov loop field in the calculation and study chiral symmetry restoration and the deconfinement transition.
- Hadronic freeze-out in A+A collisions meets the lattice QCD parton-hadron transition line (2013)
- We analyze hadrochemical freeze-out in central Pb+Pb collisions at CERN SPS and LHC energies. Employing the UrQMD hybrid transport model we study the effects of the final hadron/resonance expansion phase on the hadron multiplicities established at hadronization. The bulk meson yields freeze out directly at hadronization whereas the baryon-antibaryon sector is subject to significant alterations, due to annihilation and regeneration processes. We quantify the latter changes by survival factors for each species which are applied to modify the statistical model predictions for the data. The modified SM analysis recovers the hadronization points, which coincide with the recent lattice QCD predictions of the parton-hadron transition line at finite baryochemical potential.
- Hadronization, chemical equilibrium and chemical freeze-out (2013)
- Recent results on baryon production in relativistic heavy ion collisions show that a revision of the chemical freeze-out conditions is necessary. Particularly, there is evidence that chemical freezeout does not occur at full chemical equilibrium. We present a method to reconstruct original hadronization conditions and show that the newly found points in the T − µB plane are in very good agreement with extrapolations of the lattice QCD critical line.
- Hadron resonance production and final state hadronic interactions with UrQMD at LHC (2015)
- We discuss the effects of the final hadronic state, in ultra-relativistic nuclear collisions, on hadronic resonance properties and measurable production rates. In particular we will compare our results with recent ALICE data on resonance production. We show that the hadronic phase of the system evolution has a considerable impact on the measured resonance ratios and pT spectra. We also discuss some of the remaining uncertainties in the model and how they may be addressed in future studies.
- Final state hadronic rescattering with UrQMD (2018)
- In this talk we discuss the effects of the hadronic rescattering on final state observables in high energy nuclear collisions. We do so by employing the UrQMD transport model for a realistic description of the hadronic decoupling process. The rescattering of hadrons modifies every hadronic bulk observable. For example apparent multiplicity of resonances is suppressed as compared to a chemical equilibrium freeze-out model. Stable and unstable particles change their momentum distribution by more than 30% through rescattering. The hadronic rescattering also leads to a substantial decorrelation of the conserved charge distributions. These findings show that it is all but trivial to conclude from the final state observables on the properties of the system at an earlier time where it may have been in or close to local equilibrium.
- Correlated D-meson decays competing against thermal QGP dilepton radiation (2013)
- The QGP that might be created in ultrarelativistic heavy-ion collisions is expected to radiate thermal dilepton radiation. However, this thermal dilepton radiation interferes with dileptons originating from hadron decays. In the invariant mass region between the f and J=y peak (1GeV <= M l+l <=. 3GeV) the most substantial background of hadron decays originates from correlated DD¯ -meson decays. We evaluate this background using a Langevin simulation for charm quarks. As background medium we utilize the well-tested UrQMD-hybrid model. The required drag and diffusion coefficients are taken from a resonance approach. The decoupling of the charm quarks from the hot medium is performed at a temperature of 130MeV and as hadronization mechanism a coalescence approach is chosen. This model for charm quark interactions with the medium has already been successfully applied to the study of the medium modification and the elliptic flow at FAIR, RHIC and LHC energies. In this proceeding we present our results for the dilepton radiation from correlated D¯D decays at RHIC energy in comparison to PHENIX measurements in the invariant mass range between 1 and 3 GeV using different interaction scenarios. These results can be utilized to estimate the thermal QGP radiation.
- The enhancement of v4 in nuclear collisions at the highest densities signals a first-order phase transition (2018)
- The beam energy dependence of v4 (the quadrupole moment of the transverse radial flow) is sensitive to the nuclear equation of state (EoS) in mid-central Au + Au collisions at the energy range of 3<sNN−−−−√<30 GeV, which is investigated within the hadronic transport model JAM. Different equations of state, namely, a free hadron gas, a first-order phase transition and a crossover are compared. An enhancement of v4 at sNN−−−−√≈6 GeV is predicted for an EoS with a first-order phase transition. This enhanced v4 flow is driven by both the enhancement of v2 as well as the positive contribution to v4 from the squeeze-out of spectator particles which turn into participants due to the admixture of the strong collective flow in the shocked, compressed nuclear matter.
- Equation of state dependence of directed flow in a microscopic transport model (2017)
- We study the sensitivities of the directed flow in Au+Au collisions on the equation of state (EoS), employing the transport theoretical model JAM. The EoS is modified by introducing a new collision term in order to control the pressure of a system by appropriately selecting an azimuthal angle in two-body collisions according to a given EoS. It is shown that this approach is an efficient method to modify the EoS in a transport model. The beam energy dependence of the directed flow of protons is examined with two different EoS, a first-order phase transition and crossover. It is found that our approach yields quite similar results as hydrodynamical predictions on the beam energy dependence of the directed flow; Transport theory predicts a minimum in the excitation function of the slope of proton directed flow and does indeed yield negative directed flow, if the EoS with a first-order phase transition is employed. Our result strongly suggests that the highest sensitivity for the critical point can be seen in the beam energy range of 4.7 ≤√sNN≤11.5GeV.
- QCD equation of state from a chiral hadronic model including quark degrees of freedom (2013)
- This work presents an effective model for strongly interacting matter and the QCD equation of state (EoS). The model includes both hadron and quark degrees of freedom and takes into account the transition of chiral symmetry restoration as well as the deconfinement phase transition. At low temperatures T and baryonic densities ρB a hadron resonance gas is described using a SU(3)-flavor sigma-omega model and a quark phase is introduced in analogy to PNJL models for higher T and ρB. In this way, the correct asymptotic degrees of freedom are used in a wide range of T and ρB. Here, results of this model concerning the chiral and deconfinement phase transitions and thermodynamic model properties are presented. Large hadron resonance multiplicities in the transition region emphasize the importance of heavy-mass resonance states in this region and their impact on the chiral transition behavior. The resulting phase diagram of QCD matter at small chemical potentials is in line with latest lattice QCD and thermal model results.
- Spinodal crumbling (2013)
- Extending a previously developed two-phase equation of state, we simulate head-on relativistic lead-lead collisions with fluid dynamics, augmented with a finite-range term, and study the effects of the phase structure on the evolution of the baryon density. For collision energies that bring the bulk of the system into the mechanically unstable spinodal region of the phase diagram, the density irregularities are being amplified significantly. We also present results for the associated clump size distribution.